intgl.

Intel® JPEG Library

Porting to the IJL from the
Independent JPEG Group’s JPEG
Source

Version 1.3
August 15, 1998

Copyright © 1998 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

Intel Corporation assumes no responsibility for errors or omissions in this guide. Nor does Intel make any
commitment to update the information contained herein.

* Other product and corporate names may be trademarks of other companies and are used only for explanation
and the owners’ benefit, without intent to infringe.

Table of Contents

INETOAUCTION ..ot b ebes sbesssbesssse b esanas @
1.1 AbOUL THhIS DOCUMENLcooiiiiiiecect ettt il
1.2 Nature of PrOQUCT ...t il
1.3 Technical Support and FEEADACKcoouiiiiiie e E]
OVBIVIBW ..ot bbb bbb bbb es Sebsasbe s s bt as @
2.1 Matching the IJG Sample Application “djPEG.EXE" ..o E
2.2 Matching the IJG Sample AppliCation “CJPEJ.EXE"coiiiii et
2.3 Quality differences between 1JL and 1JG encoder quality SEttiNgs..........ccvcevereienienieienenennene
Appendix A: A Memory-Mapped Bitmap implementation of a JPEG Decoder...................... 22 D
Appendix B: A Memory-Mapped Bitmap implementation of a JPEG Encoder...........c.......... 25 D

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Intel® JPEG Library — Porting to the 1JL from the Independent JPEG Group’s JPEG Source

1. Introduction

1.1 About This Document

This document provides help to developers who wish to port an application currently
interfacing with the Independent JPEG Group’s (IJG) version 6a JPEG codec to one using
the high performance Intel® JPEG Library (1JL).

It is assumed that the reader has a working knowledge of the software development

process and the C/C++ programming language. The reader should be familiar with the

1JG version 6a JPEG codec. Some familiarity with digital imaging, software development

for the Microsoft* Windows* 95 operating system, and the Microsoft Foundation Classes*
application framework may also be useful.

1.2 Nature of Prod uct

The 1JL is a software library for application developers that provides high performance
JPEG encoding and decoding of full color, and grayscale, continuous-tone still images.

The 1JL was designed for use on Intel® architecture platforms and has been tuned for
high performance and efficient memory usage. Additionally, the 1JL was developed to
take advantage of MMX™ technology if present.

The IJL provides an easy-to-use programming interface without sacrificing low-level JPEG
control to advanced developers. The IJL also includes a substantial amount of
functionality that that is not included in the ISO JPEG standard. This added functionality is
typically necessary when working with JPEG images, and includes pre-processing and
post-processing options like sampling and color space conversions.

1.3 Technica | Suppor t and Feedback
Your feedback on the IJL is very important to us. We will strive to provide you with
answers or solutions to any problems you might encounter. To give your feedback, or to
report any problems with installation or use, please contact one of the following:
m Support Hotlines:
North American Hotline: 800-628-8686
International Hotline: 916-356-7599

m Send e-mail to developer_support@intel.com

Intel® JPEG Library — Porting to the 1JL from the Independent JPEG Group’s JPEG Source

The Intel® JPEG Library (IJL) is a robust, high performance JPEG engine. It was
designed with a simple application interface and well-defined usage models. In contrast,
the Independent JPEG Group’s (IJG) version 6a JPEG codec is a code-level, platform
independent, reference JPEG implementation. It was one of the original implementations
of the JPEG standard and was influential in JPEG’s adoption. The 1JG implementation
has withstood the test of time because it is freely available, and it has benefited from years
of use and feedback.

The 1JG implementation does not have a well-defined (i.e., strict) user interface. It was
written in the “C” programming language. It needs to be included in a program, or
“packaged” by a programmer, prior to its use. It is not a library, or a binary object, or any
other executable primitive like the IJL. However, several sample applications included
with the public version of IJG version 6a have implemented common JPEG usage models
and illustrate the use of the 1JG implementation in common scenarios.

It is from these examples that we may draw comparisons to the IJL. The interface to the
IJL and 1JG is fundamentally different (the 1JL has a well-defined APl whereas the

IJG has only a C source framework). While no one can anticipate all possible uses of a
JPEG implementation, the IJL is capable of most of the functionality provided by the 1JG
code base. The following table illustrates the similarities and differences between the two.

Feature 1JL 3G
Supported? | Supported?

Demde animage by scailines Yes Yes
Encock an entire JPEG image Yes Yes
Support bottom-up bitmaps Yes Yes
Support Cusom JPEG tables (i.e., Huffman and quantizaton) Yes Yes
Suppot variabk qualty JPEG authoring Yes Yes
Decock an arbitray regian of animage Yes No
Suypport custom bitmap formass (i.e., BGR ard RGB) Yes No
Support interrupted processing Yes No
Encode an image by scanlines No Yes
Support custan erra handing No Yes
Support user-cutomized JPEG processg elements No Yes

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

Feature (N 3G
Supported? | Supported?
Support little-endian byte order architectures No Yes
Support Progressive JPEG encoding No Yes
Support decoding of GIF, PPM, BMP, TGA, RLE file formats No Yes
Support for palettized output No Yes
Optimal Huffman Table generation No Yes
Support for JPEG recompression No Yes
Support for CMYK JPEG Images No Yes
Support 12-hit JPEG decoding No Yes

Table 1 Comparing & Contrasting the 1JL and 1JG.

TSupports either 8 bit or 12 bit, not both.

2.1 Matching the IJG Sample Application “djpeg.exe”

An important application included with the 1JG source code is a DOS* executable that
permits command-line control over many of the decoding features presented by IJG. We
will replace the core components of this code by the IJL equivalents.

The following code is an adapted version of the “djpeg” executable included with 1JG 6a.
This application uses IJG to decode a JPEG image to a Windows* DIB file.

/INote: This code is based on a file "djpeg.c* from the Independent
/IJPEG Group (IJG) JPEG codec Version 6a. Please see the original
/3G README file for legal information relating to code distribution
/land attribution

/NJG Copyright:
/[This software is copyright (C) 1991-1996, Thomas G. Lane.
/IAll Rights Reserved except as specified below.

#include "stdio.h"
#include ".\ijg\cdjpeg.h"

int main()

{
/[The input and output "C" file structures
FILE* input_file;
FILE* output_file;

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

char* input_filename = "input.jpg";
char* output_filename = "output.omp";

/lthe number of scanlines read from each call to the
/Ipixel-reading 1JG function (jpeg_read_scanlines)
JDIMENSION num_scanlines;

/lopen the input JPEG and output bitmap file.
input_file = fopen(input_filename, READ_BINARY);
output_file = fopen(output_filename, WRITE_BINARY);

llcreate a JPEG decompression structure on the stack
[Ithis structure is used by IJG to store JPEG-
/Ispecific information and decompression parameters
struct jpeg_decompress_struct cinfo;

/lcreate a JPEG error handler structure on the stack
/NJG permits user-defined error management

struct jpeg_error_mgr jerr;

cinfo.err = jpeg_std_error(&jerr);

/linitialize the JPEG decompression structure
jpeg_create_decompress(&cinfo);

/Iset the JPEG input as a standard file
jpeg_stdio_src(&cinfo, input_file);

/[The "destination manager" is a file format manager built into
/NJG that performs conversions between 1JG data and

/lother file formats. In this case, we initialize the manager to
/l[deal with 24-bit (true color) Windows Bitmaps.

djpeg_dest_ptr dest_mgr = jinit_write_bmp(&cinfo, FALSE);
dest_mgr->output_file = output_file;

/IRead the file header
/ITRUE indicates we will use the default decompression parameters
jpeg_read_header(&cinfo, TRUE);

/Ibegin decoding the JPEG file. Read image parameters,
/land header information.
jpeg_start_decompress(&cinfo);

/IStart writing to the destination Windows Bitmap.

/[The bitmap file header and BITMAPINFOHEADER will be
/hwritten to thee output file.

(*dest_mgr->start_output) (&cinfo, dest_mgr);

/Nloop over the JPEG image: read groups of scanlines

/l(each read captures num_scanlines) and write these

/lgroups to the output bitmap

while (cinfo.output_scanline < cinfo.output_height)

{
/lread a group of scanlines from the JPEG file. 1JG decides
/lthe number of scanlines it needs to read (up to the
/Imaximum number specified by the "dest_mgr->buffer_height"
/lparameter) and will buffer them internally.

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer,
dest_mgr->buffer_height);

/lwrite these buffered scanlines to the destination manager.
/lthe destination manager is capable of writing a variable
/Inumber of scanlines to the destination
(*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines);

}

/ffinish writing any additional information to the Bitmap
(*dest_mgr->finish_output) (&cinfo, dest_mgr);

/IFinish decompressing the JPEG file and
/ldestroy the JPEG Decompressor
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);

/lclose input and output files
fclose(input_file);
fclose(output_file);

return O;

The 1JL can be used in two ways to accomplish the same task. We will illustrate both.
The final code for each 1JL implementation is found at the end of this section.

Our first approach is (like 1JG) to create a temporary buffer for the decoded JPEG image
and write the temporary buffer to the bitmap. We will choose a small buffer for efficiency
(the buffer is set to 32 scanlines in length, because we know that this number works well
for most JPEG images). The IJL does not support file types other than JPEG, so we will
need to add our own bitmap header.

Looking at the first segment of the IJG code (ignoring the header and #include s), G
requires us to open both the input and output files.

int main()
{
/[The input and output "C" file structures
FILE* input_file;
FILE* output_file;
char* input_filename = "input.jpg";
char* output_filename = "output.omp";
/lthe number of scanlines read from each call to the
/Ipixel-reading 1JG function (jpeg_read_scanlines)
JDIMENSION num_scanlines;

/lopen the input JPEG and output bitmap file.
input_file = fopen(input_filename, READ_BINARY);
output_file = fopen(output_filename, WRITE_BINARY);

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

The 1L is equivalent, but performs the JPEG file opening itself. We therefore can avoid it
entirely:

int main()

{

/linput and output filenames

FILE* output_file;

char* input_filename = "input.jpg";
char* output_filename = "output.omp";

/IOpen the bitmap file for output.
output_file = fopen(output_filename, WRITE_BINARY);

We then initialize the JPEG decompressor structure. For 1JG, it is typically called “cinfo”
and for the IJL it is called “jcprops”. 1JG requires initialization of the error handler as well;
the IJL includes a built-in error manager. We then tell 1IJG to use our input file as the
source for future JPEG decompression.

/lcreate a JPEG decompression structure on the stack
[lthis structure is used by IJG to store JPEG-
/Ispecific information and decompression parameters
jpeg_decompress_struct cinfo;

/lcreate a JPEG error handler structure on the stack
/NJIG permits user-defined error management
jpeg_error_mgr jerr;

cinfo.err = jpeg_std_error(&jerr);

/linitialize the JPEG decompression structure
jpeg_create_decompress(&cinfo);

/Iset the JPEG input as a standard file
jpeg_stdio_src(&cinfo, input_file);

The IJL uses a member of the JPEG structure to store a pointer to the filename string:

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

llcreate the JPEG structure on the stack

JPEG_CORE_PROPERTIES jcprops;

/linitialize the JPEG structure

ijlinit(&jcprops);

/lset the IJL data source as the input filename
jcprops.JPGFile = input_filename;

Now that the IJL has been initialized and the source specified, we need to specify our
destination. Both applications need some information from the JPEG file; this information
will be used to write the header (non-image data portions of the output Bitmap). 1JG Does
it for us:

/[The "destination manager" is a file format manager built into
/NJG that performs conversions between 1JG data and

/lother file formats. In this case, we initialize the manager to
/l[deal with 24-bit (true color) Windows Bitmaps.
djpeg_dest_ptr dest_mgr = jinit_write_bmp(&cinfo, FALSE);
dest_mgr->output_file = output_file;

/IRead the file header
/ITRUE indicates we will use the default decompression parameters
jpeg_read_header(&cinfo, TRUE);

/Ibegin decoding the JPEG file. Read image parameters,
/land header information.
jpeg_start_decompress(&cinfo);

/IStart writing to the destination Windows Bitmap.

/[The bitmap file header and BITMAPINFOHEADER will be
/hwritten to thee output file.

(*dest_mgr->start_output) (&cinfo, dest_mgr);

While the 1JL requires us to manually initialize the Bitmap header:

/lread JPEG parameters from the file
ijIRead(&jcprops, IJL_JFILE_READPARAMS);

/lcalculate the line offset of the output DIB.
//\Windows DIBs are aligned to 4-byte line widths.
int DIBOffset = (jcprops.JPGWidth*3 + 3)/4*4;

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

bmfh.bfType = 'MB';

bmfh.bfSize = DIBOffset * jcprops.JPGHeight +
sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER);

bmfh.bfReservedl = 0;

bmfh.bfReserved2 = 0;

bmfh.bfOffBits = sizeof(BITMAPFILEHEADER) +

sizeof(BITMAPINFOHEADER);

bmih.biSize = sizeof(BITMAPINFOHEADER);
bmih.biWidth = jcprops.JPGWidth;
bmih.biHeight = jcprops.JPGHeight;
bmih.biPlanes = 1;

bmih.biBitCount = 24,

bmih.biCompression = BI_RGB,;

bmih.biSizelmage = 0;

bmih.biXPelsPerMeter = 1;
bmih.biYPelsPerMeter = 1;
bmih.biClrUsed =
bmih.biClrimportant = O;

unsigned long nwritten;

[/lwrite the bitmap file header to the bitmap
WriteFile(hbitmapfile, &bmfh, sizeof(bmfh), &nwritten, 0);
WriteFile(hbitmapfile, &bmih, sizeof(bmih), &nwritten, 0);

We are on the verge of reading actual image data from the JPEG image and writing it to
the bitmap. We now encounter some of the most significant differences between the 1JL
and 1JG.

The simplest use of 1JG “owns” uncompressed image data produced by the library. In our
usage, this “ownership” has been ftransferred to the destination manager. The
fundamental decoding call in 1JG is “jpeg_read_scanlines” which permits us to read data
with a granularity of “groups of scanlines “. We loop over the image vertically, reading
groups of scanlines and transferring them to the destination (in this case, our destination

manager).

/Noop over the JPEG image: read gropes of scanlines

/l(each read captures num_scanlines) and write these

/lgroups to the output bitmap

while (cinfo.output_scanline < cinfo.output_height)

{
/lread a group of scanlines from the JPEG file. 1JG decides
/lthe number of scanlines it needs to read (up to the

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/iparameter) and will buffer_them internally. .

S[E = Sese= Lpecsgr ===cc=a_poscgreon

num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer,

dest_mgr->buffer_height);

Ilwrite these buffered scanlines to the destination manager.
/lthe destination manager is capable of writing a variable
/Inumber of scanlines to the destination
(*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines);

Without a destination manager of its own, the IJL demands that the application own the
output buffer. The IJL will then be forced to allocate its own image buffer. After creating
the buffer, we pass information about its size to the IJL (by setting the jcprops.DIBxxxx
parameters). The IJL gives us pixel-granularity on decoding the JPEG image (we can
request, with a Rectangle-of-Interest, as little as one pixel at a time from the JPEG image)
but it is significantly faster when requesting 32-pixel aligned regions for most images. As
we will need to write entire scanlines to the Bitmap anyway, we choose to follow the 1JG
plan and create a buffer as wide as the image and 32 pixels high.

We then loop over the image, reading 32-pixel high chunks of data and writing them to the
bitmap.

Note that our bitmap is “bottom up” while the JPEG is “top down”; this requires us to use a
negative DIBHeight specification. We also encounter a special case for the last (assumed
partial) 32-pixel block of the DIB.

/lcreate a temporary buffer big enough to hold a 32-line chunk of
/lthe bitmap. This buffer will be written to by IJL; we will

/lthen write this buffer to the bitmap.

unsigned char* dibBuffer = new unsigned char [DIBOffset * 32];

/lset up the buffer specification for the JPEG decoder

jcprops.DIBBytes = dibBuffer;
jcprops.DIBWidth = jcprops.JPGWidth;
jcprops.DIBColor = JL_BGR;
jcprops.DIBChannels = 3;

jcprops.DIBPadBytes = 1JL_DIB_PAD_BYTES(
jcprops.DIBWidth,jcprops.DIBChannels);

jcprops.DIBHeight = -32;
for (int i = 0; i < (int)jcprops.JPGHeight; i += 32)
{

/lread from a small region of the JPEG image
jcprops.jprops.roi.left = 0;
jcprops.jprops.roi.right = jcprops.JPGWidth;

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

jcprops.jprops.roi.botto Lom=i+ 32

/lread data from the JPEG image into the bitmap
ijlIRead(&jcprops, IJL_JFILE_READENTROPY);

/lwrite data from the temporary buffer to the bitmap file.
fwrite(dibBuffer, 1,
DIBOffset * min(32, jcprops.JPGHeight - i),
output_file);

1JG does not handle this special case in the main decoding loop, so we need to include an
additional instruction to write the last few lines to the bitmap:

/ffinish writing any additional information to the Bitmap
(*dest_mgr->finish_output) (&cinfo, dest_mgr);

We will then free 1JG and close the input and output files:

/IFinish decompressing the JPEG file and
/l[destroy the JPEG Decompressor
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);

/lclose input and output files
fclose(input_file);

fclose(output_file);

return O;

and likewise for the IJL:

/lclean up and destroy the JPEG Decompressor
ijIFree(&jcprops);

10

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

delete [] dibBuffer;

/llclose the output file

fclose(output_file);

return 0O;

The second technique we may choose to exploit uses the Microsoft Win32 to create a
memory-mapped Bitmap. It has the advantages of avoiding an output buffer (though
Windows may create an intermediate buffer internally) and allowing the OS to best
determine how to buffer data for optimal use of the destination file. The technique is in
general not as extensible to other decoding requirements (for example, writing to a DIB in
memory or a 24-bit display surface). The example for this code is found in the appendix.

#include "windows.h"
#include "ijl.h"

int main()

{

/I input and output filenames

FILE* output_file;

char* input_filename = "input.jpg";
char* output_filename = "output.omp";

/I Open the bitmap file for output.
output_file = fopen(output_filename, "wb+");

/I create the JPEG structure on the stack
JPEG_CORE_PROPERTIES jcprops;

/I initialize the JPEG structure

ijlinit(&jcprops);

/I set the IJL data source as the input filename
jcprops.JPGFile = input_filename;

/I read JPEG parameters from the file
ijlIRead(&jcprops, IJL_JFILE_READPARAMS);

/I calculate the line offset of the output DIB.

/I Windows DIBs are aligned to 4-byte line widths.
int DIBOffset = (jcprops.JPGWidth*3 + 3)/4*4;

/I write the output bitmap header
BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

bmfh.bfType = 'MB;

11

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER);
bmfh.bfReservedl = O;
bmfh.bfReserved2 = 0;
bmfh.bfOffBits = sizeof(BITMAPFILEHEADER) +
sizeof(BITMAPINFOHEADER);

bmih.biSize = sizeof(BITMAPINFOHEADER);
bmih.biWidth = jcprops.JPGWidth;
bmih.biHeight = jcprops.JPGHeight;
bmih.biPlanes = 1;

bmih.biBitCount = 24,

bmih.biCompression = BI_RGB;

bmih.biSizelmage = 0;

bmih.biXPelsPerMeter = 1;
bmih.biYPelsPerMeter = 1;
bmih.biClrUsed = 0;
bmih.biClrimportant = O;

unsigned long nwritten;

/I write the bitmap file header to the bitmap
WriteFile(hbitmapfile, &bmfh, sizeof(bmfh), &nwritten, 0);
WriteFile(hbitmapfile, &bmih, sizeof(bmih), &nwritten, 0);

/I create a temporary buffer big enough to hold a 32-line chunk of
/I the bitmap. This buffer will be written to by IJL; we will

/I then write this buffer to the bitmap.

unsigned char* dibBuffer = new unsigned char [DIBOffset * 32];

/I set up the buffer specification for the JPEG decoder

jcprops.DIBBytes = dibBuffer;
jcprops.DIBWidth = jcprops.JPGWidth;
jcprops.DIBColor = JL_BGR,;

jcprops.DIBChannels = 3;
jcprops.DIBPadBytes = DIBOffset - 3*cprops.JPGWidth;

jcprops.DIBHeight = -32;
for (int i = 0; i < (int)jcprops.JPGHeight; i += 32)
{

/I read from a small region of the JPEG image
jcprops.jprops.roi.left = 0;
jcprops.jprops.roi.right = jcprops.JPGWidth;
jcprops.jprops.roi.top =i
jcprops.jprops.roi.botto m =i + 32

/I read data from the JPEG image into the bitmap
ijIRead(&jcprops, 1JL_JFILE_READENTROPY);

/I write data from the temporary buffer to the bitmap file.
fwrite(dibBuffer, 1,
DIBOffset * min(32, jcprops.JPGHeight - i),
output_file);

12

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/I clean up and destroy the JPEG Decompressor
ijlIFree(&jcprops);

/I release the buffer

delete [] dibBuffer;

/I close the output file
fclose(output_file);

return O;

2.2 Maitching the 1IJG Sample Application “cjpeg.exe”

Like “djpeg.exe”, “cjpeg.exe” is a DOS application that permits command-line
configuration; except this time in the JPEG encoder.

Like the decoder, there are a couple of ways to map the 1JL to “cjpeg.c™s functionality. In
the first we copy a bitmap into a temporary buffer and use the 1JL to encode the buffer to a
JPEG file. In Appendix B, we illustrate a method to accomplish the same end without a
temporary buffer — by using Windows memory-mapped files.

The code for a simplified version of the 1JG source “cjpeg.c” is given below.

/I Note: This code is based on a file "djpeg.c" from the Independent
/I JPEG Group (IJG) JPEG codec Version 6a. Please see the original
/I 193G README file for legal information relating to code distribution

/I and attribution

=

/)
/)
/)

=

1IJG Copyright:
This software is copyright (C) 1991-1996, Thomas G. Lane.
All Rights Reserved except as specified below.

=

#include <stdio.h>
#include "\ijg\cdjpeg.h"

int main()

{
/I open input and output files
FILE* input_file;
FILE* output_file;
char* input_filename = "input.bmp";
char* output_filename = "output.jpg";

input_file = fopen(input_filename, READ_BINARY);
output_file = fopen(output_filename, WRITE_BINARY);

13

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

jpeg_compress_struct cinfo;

/I Initialize the JPEG compression object with default error
/I handling.

jpeg_error_mgr jerr;

cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);

/I set the default compression parameters. [JG's defaults produce

/I a "standard" JFIF image with 4:1:1 subsampling in a YUV color
/I space at average quality.

cinfo.in_color_space = JCS_RGB;

jpeg_set_defaults(&cinfo);

/I Set the input format for our source manager as a Windows
/I Bitmap file

cjpeg_source_ptr src_mgr = jinit_read_bmp(&cinfo);
src_mgr->input_file = input_file;

/I Read the input file header to obtain file size & colorspace.
(*src_magr->start_input) (&cinfo, src_mgr);

/I Now that we know input colorspace, fix colorspace-dependent
/I defaults
jpeg_default_colorspace(&cinfo);

/I Specify data destination for compression
jpeg_stdio_dest(&cinfo, output_file);

/I Start compressor
jpeg_start_compress(&cinfo, TRUE);

/I Process data
while (cinfo.next_scanline < cinfo.image_height)

{
/I read data from the source into the source buffer
/I num_scanlines will be read.
int num_scanlines = (*src_mgr->get_pixel_rows) (
&cinfo,
src_mgr);
/I write num_scanlines scanlines of data from the source
/I manager input buffer (src_mgr->buffer) to the JPEG file.
jpeg_write_scanlines
(&cinfo, src_mgr->buffer, num_scanlines);
}

/I Finish reading data from the Bitmap and writing it to
/I the JPEG image.

(*src_mgr->finish_input) (&cinfo, src_magr);
jpeg_finish_compress(&cinfo);

/I Clean up the JPEG Compressor structure.
jpeg_destroy_compress(&cinfo);

14

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

fclose(input_file);
fclose(output_file);

return 0O;

Like the “djpeg.c” case above, we will map the various segments of this program into
equivalent portions in the 1JL.

Like in “djpeg.c” we need to initialize our I/O files:

int main()

{
/I open input and output files
FILE* input_file;
FILE* output_file;
char* input_filename = "input.bomp";
char* output_filename = "output.jpg";

input_file = fopen(input_filename, READ_BINARY);
output_file = fopen(output_filename, WRITE_BINARY);

The IJL handles JPEG file opening and closing directly — we do not need to explicitly open
the output file:

int main()

{
/I open input and output files
FILE* input_file;
char* input_filename = "input.bomp";
char* output_filename = "output.jpg";
input_file = fopen(input_filename, "rb");

IJG next needs to initialize its JPEG compressor structure and set the encoder to create a
default JPEG image. This image consists of a YCbCr 4:1:1 subsampled JPEG image with
an average (75 out of 100) quality level.

/I create the JPEG compression structure.
jpeg_compress_struct cinfo;

15

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/I handling.

jpeg_error_mgr jerr;

cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);

/I set the default compression parameters. [|JG's defaults produce
/I a "standard" JFIF image with 4:1:1 subsampling in a YUV color

/I space at average quality.

cinfo.in_color_space = JCS_RGB;
jpeg_set_defaults(&cinfo);

And in the 1JL:

/I create an IJL compressor; initialize with default
/I parameters

JPEG_CORE_PROPERTIES jcprops;
ijlinit(&jcprops);

Initializing data from the bitmap is simple in 1JG, which has a source module that hides the
bitmap parsing from the user. This “source manager” is not present in the 1JL, therefore it
is necessary to configure 1JG to read from the source image:

/I Set the input format for our source manager as a Windows
/I Bitmap file

cjpeg_source_ptr src_mgr = jinit_read_bmp(&cinfo);
src_mgr->input_file = input_file;

/I Read the input file header to obtain file size & colorspace.
(*src_magr->start_input) (&cinfo, src_mgr);

The IJL needs to:

/I read the bitmap headers
/I these headers contain the bitmap parameters
/I (height, width, etc)

16

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

BITMAPINFOHEADER bmih;
fread(&bmfh, 1, sizeof(BITMAPFILEHEADER), input_file);

fread(&bmih, 1, sizeof(BITMAPINFOHEADER), input_file);

/I determine the width of one line of the input bitmap in bytes
/I Windows Bitmaps are padded to make each line width an even

/I multiple of 32 bits.
long DIBLineSize = (bmih.biwidth * 3)/4*4;

/I initialize the compression parameters describing the kind of
/I Bitmap we are encoding from.
jcprops.DIBChannels = 3;

jcprops.DIBColor = JL_BGR,;
jcprops.DIBHeight = bmih.biHeight;
jcprops.DIBWidth = bmih.biWidth;

jcprops.DIBPadBytes = 1JL_DIB_PAD_BYTES(
jcprops.DIBWidth, jcprops.DIBChannels);

We can now finish initializing the JPEG parameters prior to compression:

/I Now that we know input colorspace, fix colorspace-dependent
/I defaults
jpeg_default_colorspace(&cinfo);

/I Specify data destination for compression
jpeg_stdio_dest(&cinfo, output_file);

/I Start compressor
jpeg_start_compress(&cinfo, TRUE);

and in the 1JL:

/I initialize the compression parameters describing the kind of

/I JPEG to create. We are using default values for image quality,
/I JPEG color space, etc.

jcprops.JPGHeight = bmih.biHeight;

jcprops.JPGWidth = bmih.biWidth;

/I Set the JPEG compressor to write to the "output.jpg" file
jcprops.JPGFile = output_filename;

17

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

Compressing the actual image data in 1JG follows the same technique (but reversed) as
decompressing; we loop over the scanlines in the image, read a variable number of
scanlines from the source manager into an internal buffer, and write these scanlines to the
output.

/I Process data
while (cinfo.next_scanline < cinfo.image_height)

{
/I read data from the source into the source buffer
/I num_scanlines will be read.
int num_scanlines = (*src_mgr->get_pixel_rows) (
&cinfo,
src_mgr);
/I write num_scanlines scanlines of data from the source
/I manager input buffer (src_mgr->buffer) to the JPEG file.
jpeg_write_scanlines
(&cinfo, src_mgr->buffer, num_scanlines);
}

/I Finish reading data from the Bitmap and writing it to
/I the JPEG image.

(*src_mgr->finish_input) (&cinfo, src_magr);
jpeg_finish_compress(&cinfo);

The 1JL does not currently support scanline-based encoding — we must encode the whole
file in one step. This requires a temporary buffer big enough to hold the entire JPEG
image. This buffer is set as the source of the image data inside of the IJL structure, before
the single call to ijlWrite is made.

/I allocate a DIB large enough to hold the entire bitmap.
/I this DIB will be passed to the encoder as the actual input.

/I Note that we could use other, more efficient techniques

/I to map the bitmap file into an address range IJL can interpret;

/I Windows memory-mapped files would be a good solution.

unsigned char* DIBBuffer = new unsigned char [DIBLineSize *
bmih.biHeight];

/I read the bitmap into the memory buffer.

/I In some bitmap files the data bits will not immediately

/I follow the end of the BITMAPINFOHEADER. | am assuming for
/I this exercise that the bitmap is a "traditional" bottom-up

/I 24-bit Windows DIB where this condition holds.

18

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/I set the JPEG DIB source to the newly allocated temporary
/I buffer.
jcprops.DIBBytes = DIBBuffer;

/I write the entire JPEG image. This creates a JFIF file.
ijlwrite(&cprops, 1JL_JFILE_ WRITEWHOLEIMAGE);

Cleanup is trivial for both:

/I Clean up the JPEG Compressor structure.
jpeg_destroy_compress(&cinfo);

/I Close the input and output files
fclose(input_file);

fclose(output_file);

return O;

and in the 1JL:

/I release the IJL
ijIFree(&jcprops);

/I delete the temporary DIB buffer
delete [] DIBBuffer;

/I close the input Bitmap;
fclose(input_file);

return 0O;

The total code for the “djpeg.c”-equivalent JPEG decoder is:

#include "ijl.h"
#include <stdio.h>
#include "wingdi.h"

19

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

int main()

{
/I open input and output files
FILE* input_file;
char* input_filename = "input.bomp";
char* output_filename = "output.jpg";
input_file = fopen(input_filename, "rb");

/I create an 1IJL compressor; initialize with default

/I parameters
JPEG_CORE_PROPERTIES jcprops;
ijlinit(&jcprops);

/I read the bitmap headers

/I these headers contain the bitmap parameters
/I (height, width, etc)

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;

fread(&bmfh, 1, sizeof(BITMAPFILEHEADER), input_file);
fread(&bmih, 1, sizeof(BITMAPINFOHEADER), input_file);

/I determine the width of one line of the input bitmap in bytes

/I Windows Bitmaps are padded to make each line width an even
/I multiple of 32 bits.

long DIBLineSize = (bmih.biwidth * 3)/4*4;

/I initialize the compression parameters describing the kind of
/I Bitmap we are encoding from.
jcprops.DIBChannels = 3;

jcprops.DIBColor = JL_BGR,;
jcprops.DIBHeight = bmih.biHeight;
jcprops.DIBWidth = bmih.biWidth;

jcprops.DIBPadBytes = 1JL_DIB_PAD_BYTES(
jcprops.DIBWidth, jcprops.DIBChannels);

/I initialize the compression parameters describing the kind of

/I JPEG to create. We are using default values for image quality,
/I JPEG color space, etc.

jcprops.JPGHeight = bmih.biHeight;

jcprops.JPGWidth = bmih.biWidth;

/I Set the JPEG compressor to write to the "output.jpg" file
jcprops.JPGFile = output_filename;

/I allocate a DIB large enough to hold the entire bitmap.

/I this DIB will be passed to the encoder as the actual input.

/Il Note that we could use other, more efficient techniques

/I to map the bitmap file into an address range IJL can interpret;

/I Windows memory-mapped files would be a good solution.

unsigned char* DIBBuffer = new unsigned char [DIBLineSize *
bmih.biHeight];

20

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/I read the bitmap into the memory buffer.

/I In some bitmap files the data bits will not immediately

/I follow the end of the BITMAPINFOHEADER. | am assuming for
/I this exercise that the bitmap is a "traditional" bottom-up

/I 24-bit Windows DIB where this condition holds.

fread(DIBBuffer, 1, DIBLineSize * bmih.biHeight, input_file);

/I set the JPEG DIB source to the newly allocated temporary

/I buffer.
jcprops.DIBBytes = DIBBuffer;

/I write the entire JPEG image. This creates a JFIF file.
ijiWrite(&jcprops, 1JL_JFILE_WRITEWHOLEIMAGE);

/I release the IJL
ijlIFree(&jcprops);

/I delete the temporary DIB buffer
delete [] DIBBuffer;

/I close the input Bitmap;
fclose(input_file);

return 0O;

2.3 Quality differences between IJL and IJG encoder quality settings

The 1JL produces equivalent quality and compressed image size to 1JG given an identical
“quality level” (0-100) passed to the encoder at run time.

21

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

3. Appendix A: A Memory-Mapped Bitmap

iImplementation of a JPEG Decoder.

This section illustrates the use of the IJL to decode a JPEG image directly to a bitmap file
(using Windows Memory Mapped files).

/I Equivalent 1JL based application
#include "stdio.h"
#include "ijl.h"

int main()

{
/I intput and output filenames
char* input_filename = "input.jpg";
char* output_filename = "output.omp";

/I declare the file handle

HANDLE hbitmapfile;

/I Open the bitmap file for output.

hbitmapfile = CreateFile(
output_filename,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
0,
CREATE_ALWAYS,
0, 0);

/I create the JPEG structure on the stack
JPEG_CORE_PROPERTIES jcprops;
/I intialize the JPEG structure
ijlinit(&jcprops);
/I set the IJL data source as the input filename
jcprops.JPGFile = input_filename;
/I read JPEG parameters from the file
ijlIRead(&jcprops, IJL_JFILE_READPARAMS);
/I calculate the line offset of the output DIB.
/I Windows DIBs are aligned to 4-byte line widths.
int DIBOffset = (jcprops.JPGWidth*3 + 3)/4*4;
/I resize the output bitmap file to the actual size the
/I bitmap will represent.
SetFilePointer(
hbitmapfile,
DIBOffset * jcprops.JPGHeight + sizeof(BITMAPFILEHEADER)
+ sizeof(BITMAPINFOHEADER),
0,
FILE_BEGIN);

SetEndOfFile(hbitmapfile);

/I map the disk file into an addressable memory region.
HANDLE hFileMappingObject;

hFileMappingObject = CreateFileMapping(

22

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

hbitmapfile,

0,
PAGE_READWRITE,
0, O,

0);

/I the memory-mapped file will reside at address
/I "bitmapptr"
unsigned char* bitmapptr;
bitmapptr = (unsigned char*) MapViewOfFile(
hFileMappingObiject,
FILE_MAP_WRITE,
0, 0, 0);

/I write the output bitmap header

BITMAPFILEHEADER *bmfh = (BITMAPFILEHEADER *)bitmapptr;

BITMAPINFOHEADER *bmih = (BITMAPINFOHEADER *)(bitmapptr
+ sizeof(BITMAPFILEHEADER));

bmfh->bfType = 'MB';
bmfh->bfSize = DIBOffset * jcprops.JPGHeight
+ sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER);
bmfh->bfReservedl = O;
bmfh->bfReserved2 = 0;
bmfh->bfOffBits = sizeof(BITMAPFILEHEADER)
+ sizeof(BITMAPINFOHEADER);

bmih->biSize = sizeof(BITMAPINFOHEADER);
bmih->biwidth = jcprops.JPGWidth;
bmih->biHeight = jcprops.JPGHeight;
bmih->biPlanes = 1,

bmih->biBitCount = 24;

bmih->biCompression = BI_RGB,;
bmih->biSizelmage = 0;
bmih->biXPelsPerMeter = 1;
bmih->biYPelsPerMeter
bmih->biClrUsed = 0;
bmih->biClrimportant = 0;

I
I

/I set up the DIB specification for the JPEG decoder

jcprops.DIBBytes = bitmapptr + sizeof(BITMAPFILEHEADER)
+ sizeof(BITMAPINFOHEADER);

jcprops.DIBWidth = jcprops.JPGWidth;

jcprops.DIBHeight = -(int)jcprops.JPGHeight;

jcprops.DIBColor = 1JL_BGR;

jcprops.DIBChannels = 3;

jcprops.DIBPadBytes = 1JL_DIB_PAD_BYTES(

jcprops.DIBWidth, jcprops.DIBChannels);

/I read data from the JPEG image into the bitmap
ijlRead(&jcprops, 1JL_JFILE_READWHOLEIMAGE);

/I clean up and destroy the JPEG Decompressor
ijIFree(&jcprops);

23

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

/I close the output file
UnmapViewOfFile(bitmapptr);
CloseHandle(hFileMappingObiject);
CloseHandle(hbitmapfile);

return O;

24

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

4. Appendix B: A Memory-Mapped Bitmap

Implementation of a JPEG Encoder.

This section illustrates the use of the IJL to encode a Windows Bitmap to a JPEG image
using Windows Memory Mapped files.

#include "ijl.h"
#include "windows.h"

int main()

{
/I open input and output files
char* input_filename = "input.omp";
char* output_filename = "output.jpg";

/I create an IJL compressor; initialize with default
/I parameters

JPEG_CORE_PROPERTIES jcprops;
ijlinit(&jcprops);

/I declare the file handle
HANDLE hbitmapfile;
/I Open the bitmap file for output.
hbitmapfile = CreateFile(
input_filename,
GENERIC_READ,
0,
0,
OPEN_EXISTING,
0, 0);

/I map the disk file into an addressable memory region.
HANDLE hFileMappingObject;

hFileMappingObject = CreateFileMapping(
hbitmapfile,
0,
PAGE_READONLY,
0, O,
0);

/I the memory-mapped file will reside at address
/I "bitmapptr"
unsigned char* bitmapptr;
bitmapptr = (unsigned char*) MapViewOfFile(
hFileMappingObiject,
FILE_MAP_READ,
0, 0, 0);

/I read the input bitmap header

25

Intel® JPEG Library — Porting to the IJL from the Independent JPEG Group’s JPEG Source

BITMAPFILEHEADER* bmfh = (BITMAPFILEHEADER*)bitmapptr;
BITMAPINFOHEADER* bmih = (BITMAPINFOHEADER*)(bitmapptr
+ sizeof(BITMAPFILEHEADER));

/I determine the width of one line of the input bitmap in bytes

/I Windows Bitmaps are padded to make each line width an even
/I multiple of 32 bits.

long DIBLineSize = (bmih->biWidth * 3)/4*4;

/I initialize the compression parameters describing the kind of

/I Bitmap we are encoding from.

jcprops.DIBChannels = 3;

jcprops.DIBColor = IJL_BGR;

jcprops.DIBHeight = bmih->biHeight;

jcprops.DIBWidth = bmih->biWidth;

jcprops.DIBPadBytes = 1JL_DIB_PAD_BYTES(
jcprops.DIBWidth, jcprops.DIBChannels);

/I initialize the compression parameters describing the kind of

/I JPEG to create. We are using default values for image quality,
/I JPEG color space, etc.

jcprops.JPGHeight = bmih->biHeight;

jeprops.JPGWidth = bmih->biWidth;

/I Set the JPEG compressor to write to the "output.jpg" file
jcprops.JPGFile = output_filename;

/I set the JPEG DIB source to the newly allocated temporary
/I buffer.
jcprops.DIBBytes = bitmapptr
+ sizeof(BITMAPINFOHEADER) + sizeof(BITMAPFILEHEADER);

/I write the entire JPEG image. This creates a JFIF file.
ijlwrite(&cprops, 1JL_JFILE_ WRITEWHOLEIMAGE);

/I release the IJL
ijIFree(&jcprops);

/I Release file mapping object and close
/I output file

UnmapViewOfFile(bitmapptr);
CloseHandle(hFileMappingObject);
CloseHandle(hbitmapfile);

return 0O;

26

	Intel JPEG Library
	Legal Information
	Table of Contents
	Introduction
	About This Document
	Nature of Product
	Technical Support and Feedback

	Overview
	Matching the IJG Sample Application “djpeg.exe”
	Matching the IJG Sample Application “cjpeg.exe”
	Quality differences between IJL and IJG encoder quality settings

	Appendix A: A Memory-Mapped Bitmap implementation of a JPEG Decoder.
	Appendix B: A Memory-Mapped Bitmap implementation of a JPEG Encoder.

