Intel®
JPEG Library

Developer’s Guide

Copyright © 1998-2001, Intel Corporation
All Rights Reserved

Issued in U.S.A.

Document number 726916-006

Intel° JPEG Library
Developer's Guide

Document number: 726916-006

World Wide Web: http://developer.intel.com

Revision

-001
-002
-003
-004
-005
-006

Revision History

First release.

Added the functions ijlGetLibVersion and ijIErrorStr

Added new code examples

Documents the Intel® JPEG Library version 1.5

New operations with user-defined buffers have been added

Raw DCT data processing and support of pixel-interleaved
YCbCr422 format have been added.

Date
09/98
01/99
07/99
07/00
10/00
04/01

http://developer.intel.com/software/products/perflib/index.htm

This manual as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment by
Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by
such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel® products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or
life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, Pentium, and MMX are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright 1998 - 2001, Intel Corporation. All Rights Reserved.

Contents

Chapter 1 Overview

Nature of ProduCt...........ccoouiiiiiiiiiieiiiiie e
Minimum ReqUIreMENtSuuvviiimmimiiiiieieieeieeeeeeeeeeeeeeee
What's New in IJLoooiiiiiiiiiiiee e
Technical Support and Feedback................cccvvriiiiiiiinennnn.

Chapter 2 Programmin g Considerations
Dynamic Link Library ...,
Static LINK LIDrary ...
IMPOrt LIDFary......ccoooveiiiiii e
Header File ...
Steps for Creating an 1JL Applicationcccccceeeeeeeeee,

Chapter 3 Architectur e Description
Supported I/O Data StruCturesSccceevveeeeeveeeeeiicee e,
Supported Data FOrmats............cccceemmmiimmiiiiiiiiiieiiinieeineenes
JPEG Properties Data Storagecccoeeeveeevvveiiiiinineeeeennnnd
Multi-Threading SUPPOIT.......cccciiiiiiiiiiiiieeee e

Chapter 4 Interfac e Specificationsccccoocveiieiiiieniie e

Chapter 5 Insid e the Library
INIGANZATION ..o
Clean-uUp ..o
Reading Data............uuoiiiiieeiiiiieeiee e
WIHEING DAL ..
Opening @ JPEG IMageooviieeeiiieeecee e
Creating a JPEG IMageccvvoiiiieiiiieiiee e
Interrupted Encoding and Decoding...........cccceeevieeeieeennnnns
Rectangle-of-Interest Decoding.............cccccuvviiriiiiieiieiennnnn.
Scaled DeCOdiNg........ccvviiiiiiiiie e

A
=

(@)

=

(63}
N

(2]

(3]

\l

2

‘."|
[y
(6]

&)
[
~

ol

w
(&)

o
A
S

Intel® JPEG Library Developer’'s Guide

Embedded Thumbnail Decodingcccccovvivviiieiniiiinnnnn. l 5-44
Progressive Image SUPPOIt......cccooveeeeeeiiiiiieeee [5-45
Accessing JPEG Images From a Buffercccceeeenne [5-48 |
Working with Raw DCT CoefficientS............cevvvveviveeeeiennnne. [5-54 |
Support of a Pixel-Interleaved YCbCr422 Format @
Odd Data FOrMALS.........ccvvvvieeiieiiiiiiiieiieieieieiieeeseeeeeieennnennes @
Chapter 6 Pre- and Post-Processing
DIBS ..ttt 6-1
[JL COlOr SPACESo 6-3
SUBSAMPING .eeeiiie e 6-4
UPSAMPIING e e 6-5
Decoding and Post-Processing MatriX............ccccoevvvvvvnnnnnnn. 6-6
Encoding and Pre-Processing MatriXccceevveeeeveennnnnnn. 6-10
Chapter 7 Advanced IJL Features
Use of Processor-Specific Codecccoceiviiiiiiiininn. 7-1
Setting the DCT Algorithm...........ccviiiiiiiiiiieiie e 7-1
Writing and Reading of JPEG Comment Block................... 7-2
Custom JPEG Tables............ccooviiiiiiiiiiii, 7-2 |
Custom Quantization Tablesc.oeeeeeeeeeeeeeeeeeeeeeenn) [7-3]
Saving the JPEG Quantization Tablescccooeenee 7-7 |
Custom HUFfMan Tables..........ccocoevevevreeeeeeeeeeeeeeeeennd 7-8]
Saving the JPEG Huffman Tables.............ccccceeeeiiiiinnninnnnnnd 7-13
Extended Baseline Decodingoooeviiiiiiiiiiiiiinnee 7-15
Appendix A Glossary of Terms
Appendix B Data Structure and Type Definitions
JPEG_CORE_PROPERTIES........ctviiiiiiiiiiiiiiiiieeee e, B-1 |
Supporting Type Definitionscovvvvviiiiiiieiiiis E
Return Error CoeSooovviiiiiiiieeeeee e E
[JLIDVErsion SruCtUre........coooveeiieeeeeeee e B-10

Appendix C Frequently Asked Questions

Contents

Figures

Tables

Examples

3-1 Top-Level Architecture of the Intel JPEG Library....... 3-2

3-2 The Intel JPEG Library Main Data Structure.............. 3-4
4-1 The Intel JPEG Library Application Programming
INterface ... 4-1 |
6-1 Windows 24-bit DIB Data FOrmatcccce.een.. 6-1]
6-2 4:2:2 Subsampled Pixel-Interleaved Format.............. 6-2
5-1 Scaled Decoding Calculations...............cccevveiinenn. 5-40
6-1 I1JL Supported Color Spacescoeeveveiecciiinnnnns E
6-2 |1JL Decoding and Post-Processing Matrix................. E
6-3 1JL Encoding and Pre-Processing Matrix................... E

Decoding a JPEG image from a JFIF file to a general

PIXEL DUFFET ..o [5-7]
Decoding a JPEG image from a JFIF file ‘
tO WINdOWS DIB ..o 5-11

o
ey
(&)

Encoding a JFIF file from Windows DIBc.cceeevini.
Interrupted decodingcoovvviviiiiiiiiiiiiiiiieiieeeeeeeeeeeee
Decoding image row by roWcccoevieeeiiiiiiiiiiieeeeeeeeeienen,
Encoding image by one MCU atatimeccccooeeevrieenes 5-27
Decoding a JPEG image from JFIF file using ROI method [5-35
Decoding a JPEG image from a JFIF file using

—

e
Ny
P [|oo

the scaled decoding methodcccoooiiiii, 5-41. |
Decoding an image from a JFIF buffer 5-49 |
Encoding Windows DIB to a JPEG buffer 5-52
Working with raw DCT coefficientS...........ccccceeeeeiiininnnnnnn. I 5-55

Authoring a JPEG image using custom quantization tables
Authoring a JPEG image using custom Huffman tables

Overview

This Developer’'s Guide describes the design and implementation of the
Intel® JPEG Library (1JL). Please use this guide in conjunction with the
source code for the Sample Application and with the other 1JL
documentation as a learning tool to familiarize yourself with the use of
the IJL.

This guide assumes that the reader has a working knowledge of the
software development process and the C/C++ programming language.
Some familiarity with digital imaging, software development for the
Microsoft* Windows* 95, 98 operating systems, and the Microsoft
Foundation Classes application framework may also be useful.

A note to the reader, the following appendices are located at the end of this
document for referenceAppendix A - Glossary of TermandAppendix B

- Data Structure and Type Definitiorfahich provides additional

information on IJL data structures, type definitions, and error codes).

Nature of Product

The IJL is a software library for application developers that provides high
performance JPEG encoding and decoding of full color, and grayscale,
continuous-tone still images.

The IJL was designed for use on Iritglrocessors-based systems and has
been tuned for high performance and efficient memory usage.
Additionally, the IJL was developed to take advantage of MMX
technology if present.

1-1

1 Intel” JPEG Library Developer's Guide

The IJL provides an easy-to-use programming interface without sacrificing
low-level JPEG control to advanced developers. The IJL also includes a
substantial amount of functionality that is not included in the ISO JPEG
standard. This added functionality is typically necessary when working
with JPEG images, and includes pre-processing and post-processing
options like sampling and color space conversions.

Minimum Requirements

e The IJL requires the presence of the Microsoft Windows 95, 98 or
Windows NT* operating system, and uses the Win32* application
programming interface (API).

« The IJL was designed to run on at least an Bfeéntiun® processor.

« A 32-bit compiler is required to create a 32-bit IJL application.

¢ Since the IJL is a Dynamic Link Library (DLL), the programming
language used must be able to produce an application capable of
calling functions contained within a Win32 DLL.

What's New in IJL

The IJL version 1.5 supports the following new features:
« Encoding of progressive JPEG images.
« New DCT algorithm of higher accuracy, derived from
Intel® Integrated Performance Primitives for Intel® architecture.

¢ New sampling algorithm with triangular filter,
IJL_TRIANGLE_FILTER , which gives better quality results.

* New input data format for encoding and output format for decoding,
which is 4:2:2 subsampled pixel-interleavied YCBCR format with
data sequence set as a YO-Cbh0-Y1-Cr0-Y2-Cb1-Y3-Cr1-....

e Support of new instructions for Pentium 4 processor.

¢ Writing and reading of JPEG segment that contains comments.

e Starting from version 1.5, the library can write the JPEG tables
detected while decoding, into a user-defined buffer .

1-2

Overview

Technica | Suppor t and Feedback

Your feedbak on the |JL isvery importar to us. Wewill strive to provide
you with arswers or solutiors to ary problens you might encounter To
give your feedbackor to repot any problens with installatian or use,

pleas visit the |JL suppot pace at
http://support.intel.com/support/performancetools/libraries/ijl/index.htm

1-3

http://support.intel.com/support/performancetools/libraries/ijl/index.htm

Programming Considerations

There are four components necessary for creating an IJL application:
1. The IJL dynamic link librarylfL15.DLL),

2. The IJL static link librarygL15L.LIB),

3. The lJL import library gL15.LIB), and

4. The IJL header filelfL.H).

Dynamic Link Library

The dynamic link library (DLL) contains the IJL functions called by your
application during execution. Digits after the name indicate the current
library version.

Static Link Library

The static link library gL15L.LIB) contains the IJL functions called by
your application during execution. Digits after the name indicate the
current library version.

Import Library
The import library is linked to your application at compilation time and
relates the 1JL function calls to actual entry points in the DLL.
Header File

The header file contains the 1JL function declarations and provides data
structure definitions, data type definitions, and error codes.

2-1

Intel” JPEG Library Developer's Guide

2-2

Steps for Creating an IJL Application

1. Write your program with the IJL function calls. Use the IJL functions
just as if they were defined in your program.

2. Include the IJL header file]L.H , in each source module that calls an
IJL function.

3. Add the IJL import libraryJL15.LIB , or static libraryiJL15L.LIB to
your project’s list of link libraries.

4. Compile and link your application as you would normally do to create
a Win32 application.

Architecture Description

The current JPEG standard (ISO DIS 10918-1) has 44 possible JPEG
image compression techniques, many of which are application-specific and
not used by the majority of the JPEG decoders. Similarly, the IJL supports
only a subset of the possible compression techniques.

Today, the most commonly used JPEG modes are the sequential DCT-
based Baseline and Extended Baseline modes. Both of these are fully
supported in the IJL for JPEG encoding and decoding. The IJL version 1.5
supports also Progressive modes for JPEG encoding and decoding. There is
currently no provision for restart intervals in Progressive encoding mode.

Supported I/0O Data Structures

The IJL architecture (séeigure 3-1 performs basic input from, and output
to, these data structures:

1. A general pixel buffer in memory.
2. A standard I/O file that contains a JPEG bit stream.
3. A memory buffer that contains a JPEG bit stream.

3-1

Intel” JPEG Library Developer's Guide

Figure 3-1 Top-Level Architecture of the Intel ® JPEG Library

Read JPEG]

Pixel

JFIF
Buffer User SW

Buffer JFIF File
(rg)

JPEG Properties

Write JPEG

Architecture Description

Supported Data Formats

Additionally, the 1JL supports the following data formats:

¢ Top-down or bottom-up pixel buffers.

« Pixel buffers with user-defined end-of-line padding.

¢ Access to a rectangle-of-interest within a general pixel buffer.

« Decoding from a rectangle-of-interest within a larger JPEG image.

¢ JPEG File Interchange Format (JFIF) and abbreviated format
encoding and decoding. IJL provides decoding of JFIF files
compliant with JFIF specification version 1.02. Encoding is done as
per JFIF version 1.01. 1JL also supports decoding of embedded
uncompressed thumbnails stored using 1 or 3 bytes/pixel as
compliant with JFIF specification version 1.02. Thumbnails
compressed using JPEG are not supported at this time.

Data (sample) values must be 8-bits precision per color channel.

JPEG Properties Data Storage

The IJL’s “JPEG Properties” data storage contains global and image-
specific JPEG information. Control structures within this storage
determine /O specific processing options, such as subsampling and color
conversion requirements.

The IJL uses thePEG_CORE_PROPERTIEdata structure for storing the
JPEG properties data. This structure can be described as having two
separate parts. The first part consists of a set of fields encapsulating
common library parameters, and the other part consists of a low-level
embedded structure (sé@ure 3-2and/orAppendix B - Data Structure

and Type Definitions

Users must follow two main rules abolREG_CORE_PROPERTIES

1. The user must always provide (allocate) thREG_CORE_PROPERTIES
data structure.

2. The sam@PEG_CORE_PROPERTIEdata structure may be reused for a
series of JPEG encodings and/or decodings when initialized and
cleaned up properly.

3-3

Intel” JPEG Library Developer's Guide

Figure 3-2 The Intel ® JPEG Library Main Data Structure

JPEG_CORE_PROPERTIEES

/O Fields

JPEG_PROPERTIES

Low-Level /O Fields

Other Low-Level Fields
(FRAME, SCAN, and
COMPONENT structures)

Huffman Tables

Quantization Tables

Temp Storage

JPEG_PROPERTIESS the low-level data structure and it contains a copy of
each of the fields found inside of theEG_CORE_PROPERTIERigh-level
data structure plus some additional fields. The IJL us€ss_PROPERTIES

34

Architecture Description

internally, notJPEG_CORE_PROPERTIESO this structure isolates the
internal variables from the external.

For advanced users, theeG_PROPERTIES]ata structure may be used for
extended interface behavior. For example, the user may want to write user-
defined Huffman tables and/or quantization tables directly to
JPEG_PROPERTIES0 override the default tables (s€bdapter 7, Advanced

IJL Featuresor more information).

Default values for the fields in both thi€EG_CORE_PROPERTIE&Nd
JPEG_PROPERTIESata structures are fully documented as in-line
comments inside of the header file.H .

Multi-Threading Support

The JPEG_CORE_PROPERTIEdata structure was designed to be local to a
single thread. There is no parameter “locking” that will allow multiple
threads to access the san®&EG_CORE_PROPERTIEStructure. However,

all implementation details of the IJL allow multiple
JPEG_CORE_PROPERTIEStorages and code access by multiple threads.

3-5

Interface Specifications

Figure 4-1

The IJL provides a simple C function interface ($egure 4-1.
It was modeled on a simple read/write stack built around the
JPEG_CORE_PROPERTIEdata structure.

There are functions to initialize and release the storage used inside of
JPEG_CORE_PROPERTIESAIso provided are functions designed to
transact data and/or parameters to, or from, the IJL.

IJL function calls return a descriptive error code upon a failure; otherwise,
a positive success codel(OK, IJL_INTERRUPT_OK, IJL_ROI_OK) is
returned. Seéppendix B - Data Structure and Type Definitidosfurther
details. To convert an error code to a string with the textual description of
the error, use the functiofErrorStr()

Finally, the functionjlGetLibVersion() returns the version number
and other information about the library.
Note that both thélErrorstr() andijiGetLibVersion() functions

return a pointer to a static variable, so the application has no need to free
the memory referenced by these pointers.

The Intel ® JPEG Library Application Programming Interface

/I Initialize the IJL.
IJLERR ijlinit (JPEG_CORE_PROPERTIES *jcprops);

/I Clean up the IJL.
IJLERR ijlFree (JPEG_CORE_PROPERTIES *jcprops) ;

/I Use the IJL to read data from a buffer or a file.
IJLERR ijlRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE

iotype) ;

continued

4-1

Intel” JPEG Library Developer's Guide

4-2

Figure 4-1

The Intel JPEG Library Application Programming Interface
(continued)

/I Use the IJL to write data into a buffer or a file.

IJLERR ijlWrite (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE
iotype) ;

/I Return the version number of the IJL.

const IJLibVersion* ijlGetLibVersion() ;

/I Return a pointer to a string with error description.
const char* ijIErrorStr(IJLERR code) ;

Inside the Library

This section describes the design and implementation of common features
of the IJL, as well as providing some working examples.

Initialization

Clean-up

The IJL must be initialized before it can be used by an application. This
occurs in thejlinit() function. This function should only be called
once per each allocation ofJ@EG_CORE_PROPERTIEdata structure.

In the event that an application wants to make multiple calls to either the
encode or decode functions, the application should include a call to
ijlinit() before either of the functions is invoked, and more precisely
the initialization needs to take place between each individual call to the
encode or decode functions. This allows IReG_CORE_PROPERTIEdata
structure to reset. Additionally, there must be a one-to-one correlation
between each initialization call and its counterpjamtee() the

cleanup function.

After an application has finished using the 1JL, the memory and other
system resources allocated by the 1JL should be released by calling the
ijIFree() function.

In the case of multiple encoding or decoding calls, as reviewed in the
previous section, thgrree() function should be called after the

encode or decode function has been completed. This behavior will insure
that resources will be properly cleaned up, and any values used by the 1JL
will not be corrupted.

Intel” JPEG Library Developer's Guide

5-2

Reading Data

ijlJRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE iotype) is
one of two interface functions that access JPEG compressed data (the other
iS ijiwrite() which is discussed in the following section).

The second parameter indicates the JPEG data location (i.e., a file or a
buffer), the “mode of access”, and any scaling to be applied during the
decode process. The following tw@ IOTYPE naming conventions are
used:
1. 1JL_JBUFF_XXXX

(Indicating the JPEG data is stored in a memory buffer).
2. 1JL_JFILE_XXXX

(Indicating the JPEG data is located in a standard 1/O file).

When reading data, the mode of access mustteDPARAMREADHEADER
READENTRORREADWHOLEIMAGREADONEHALMREADONEQUARTER
READONEEIGHTHor READTHUMBNALL Each of these is described in the

tables below.
IJLIOTYPE Description
IJL_IXXXX_READPARAMS Indicates that JPEG parameters (i.e., height,

width, number of channels, subsampling) are
to be determined from the JPEG bit stream.

For example, the following markers are
parsed:

SOl | [tables/misc] like APPn and DQT |
SOF | [tables/misc] like DHT | stops at SOS

Note: bit stream must start with SOI marker.

continued

Inside the Library

IJLIOTYPE Description

IJL_JIXXXX_READHEADER Indicates the Abbreviated Format for table
specification data (i.e., Huffman tables,
quantization tables, miscellaneous marker
segments) is to be read.

For example, the following markers are
parsed:

SOl | [tables/misc] | EOI (or stops at SOF or
SOS)

Note: bit stream must start with SOI marker.

IJL_JIXXXX_READENTROPY Indicates the Abbreviated Format for
compressed image data is to be read.
Identical to READWHOLEIMAGE except
that the bit stream may or may not contain
table specification data.

For example, the following markers are
parsed:

SOl | [tables/misc] | SOF [tables/misc] like
DHT | SOS | EOI

Note: in this case only (READENTROPY),
APPO segments are skipped over.

IJL_IXXXX_READWHOLEIMAGE Indicates the Interchange Format for
compressed image data (i.e., the whole
JPEG bit stream) is to be read.

For example, the following markers are
parsed:

SOl | [tables/misc] like APPn and DQT |
SOF [tables/misc] like DHT | SOS | EOI

Typically, READPARAMIS used to determine the JPEG’s height and width
in order to allocate an output buffer or for viewing reasons. Then, to read
the remaining image dateREADWHOLEIMAGE READENTROPIs used.

5-3

Intel” JPEG Library Developer's Guide

READHEADE#B commonly called to parse the Abbreviated Format for table
specification data. It is subsequently paired VAREADENTROPtO obtain

the Abbreviated Format for compressed image data. The
READHEADHREADENTROPpair is an optimal solution to Abbreviated
Format JPEG decoding (i.e., for FlashPix* compressed images).

ThelJLIOTYPE may also be used to indicate a scaled read $eeded
Decodingfor more information). TheILIOTYPE enums for a scaled read
have the same behavior, and may be used in the same way, as a
READWHOLEIMAGE READENTRORYThe following scaled decoding
IJLIOTYPE ’s are defined:

IJLIOTYPE Description

IJL_IXXXX_READONEHALF Decodes the image scaled to % size.
For example, the following markers are
parsed:

(See READENTROPY).
IJL_IXXXX_READONEQUARTER Decodes the image scaled to % size.

For example, the following markers are
parsed:
(See READENTROPY).

IJL_IXXXX_READONEEIGHTH Decodes the image scaled to 1/8 size.

For example, the following markers are
parsed:
(See READENTROPY).

Inside the Library

Lastly, thelJLIOTYPE may be used to indicate an attempt to decode an
embedded thumbnail (if present) in a JFIF bit stream EBabedded
Thumbnail Decodindor more information).1JL_JXXXX_READTHUMBNAIL
may be used in the same waylals IXXXX_READPARAMS

IJLIOTYPE Description

IJL_IXXXX_READTHUMBNAIL Attempts to decode an embedded
thumbnail (if present) in a JFIF bit stream.

For example, the following markers are
parsed:
(See READPARAMS).

When decoding a JPEG bit stream the following markers, and their
corresponding segments if applicable, are not processed by the IJL (i.e.,
they are skipped over): APPn (except APPO and APP14), DAC, DHP,
DNL, EXP, JPGn, RES, SOFn (except SOF0, SOF1, and SOF2), and TEM.
Any SOFn markers (except SOF0, SOF1, and SOF2) will cause the
IJL_UNSUPPORTED_FRAME error.

Writing Data

ijlwrite (JPEG_CORE_PROPERTIES *, ILIOTYPE iotype) is the
interface for writing data to a JPEG bit stream.

Similar toijRead() , the second parameter indicates the JPEG data
location (i.e., a file or a buffer) and the “mode of access”. However, unlike
ijjRead() ,thelJLIOTYPE parameter cannot be used to indicate scaled
writing or to author embedded JFIF thumbnails. The following two
IJLIOTYPE naming conventions are used:
1. 1JL_JBUFF_XXXX

(Indicating the JPEG compressed data is stored in a memory buffer).
2. 1JL_JFILE_XXXX

(Indicating the JPEG data is located in a standard 1/O file).

5-5

Intel” JPEG Library Developer's Guide

When writing data, the mode of access must\eTEHEADER
WRITEENTROPYOr WRITEWHOLEIMAGEEach is described in the following
table:

IJLIOTYPE Description

1IJL_IXXXX_WRITEHEADER Indicates an Abbreviated Format for
table specification data bit stream (i.e.,
Huffman tables, quantization tables,
miscellaneous marker segments) is to
be written.
The following markers are authored:
SOl | tables DQT and DHT | EOI

IJL_IXXXX_WRITEENTROPY Indicates an Abbreviated Format for
compressed image data bit stream is
to be written. Identical to
WRITEWHOLEIMAGE except that the
bit stream may or may not contain
table specification data.

The following markers are authored:
SOl | SOF | [DRI] | SOS | EOI

IJL_IXXXX_WRITEWHOLEIMAGE Indicates a JPEG File Interchange
Format (JFIF) for compressed image
data bit stream is to be written (i.e., an
entire JPEG using JFIF).

The following markers are authored:
SOl | tables/misc APPO, DQT, and
DHT | SOF | [DRI] | SOS | EOI

WRITEHEADERS typically called to write a bit stream in the Abbreviated
Format for table specification data. Also, it is usually paired with
WRITEENTROPWhich is designed to write a bit stream in the Abbreviated
Format for compressed image data. WheITEHEADERVRITEENTROPY

pair is an optimal solution to Abbreviated Format JPEG encoding (i.e., for
FlashPix compressed images).

When encoding data, the IJL writes the COM marker segment.

If the user comment is not specified, the default comment string

“Intel® JPEG Library, [<version>]" will be written.

Inside the Library

Opening a JPEG Image

Algorithm for “Normal Decoding of a JPEG Image™:
Allocate aJPEG_CORE_PROPERTIEdata structure.
Initialize the IJL.

Get the JPEG image dimensions, etc.

Set up display parameters and allocate output storage.
Get the JPEG image data.

6. Close down the IJL.

In the following code segment, the IJL is used to decode a JPEG image
from a JFIF file. Please refer ppendix B - Data Structure and Type
Definitionsfor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

ahrwdPE

I
/I An example using the IntelR JPEG Library:

/I -- Decode a JPEG image from a JFIF file to general pixel buffer.
I

BOOL DecodeJPGFileToGeneralBuffer(
LPCSTR IpszPathName,
DWORD* width,
DWORD* height,
DWORD* nchannels,
BYTE** buffer)

{
BOOL bres;
IJLERR jerr;
DWORD x = 0; /[pixels in scan line
DWORD y = 0; /[number of scan lines
DWORD c¢ = 0; /[number of channels

DWORD wholeimagesize;
BYTE* pixel_buf = NULL;

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

bres = TRUE;

5-7

Intel® JPEG Library Developer’s Guide

5-8

__try

e

/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

jerr = ijlRead (&jcprops, L_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

/I Set up local data.

jcprops.JPGWidth;

jcprops.JPGHeight;

3; /I Decode int 0 a 3 channel pixel buffer.

0O < X
I

/I Compute size of desired pixel buffer.
wholeimagesize = (x *y * ¢);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.
jcprops.DIBWidth

X

jcprops.DIBHeight = y; // Implies a bottom-up DIB.
jcprops.DIBChannels = c;
jcprops.DIBColor = IJL_BGR;

Inside the Library

jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

I
I
I
1
1
1
I
I

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{
case 1:
{
jeprops.JPGColor = IJL_G;
break;
}
case 3:
{
jeprops.JPGColor = IJL_YCBCR,;
break;
}
default:
{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER,;
break;
}
}
/I Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops, IJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

5-9

Intel” JPEG Library Developer's Guide

5-10

Y Ity
_ finally

if(FALSE =
{
if(NULL
{

delete

= bres)
I= pixel_buf)

[pixel_buf;

pixel_buf = NULL;

}
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);

*width
*height
*nchannels
*buffer

} /I _ finally

return bres;

= X’
= y7
= C’
= pixel_buf;

} /I DecodeJPGFileToGeneralBuffer()

Note that the code segment above decodes a JPEG image into a “general
pixel buffer” and thus no special allocation or alignment of the buffer is
required. As previously mentioned @hapter 3, Architecture Description
the IJL was designed to work with a general pixel buffer, and the user is
responsible for the allocation of the buffer to hold the pixel data. The IJL
in turn can write into, or read from, the buffer. The address of the buffer
gets passed to the 1JL through thi@Bytes field in the
JPEG_CORE_PROPERTIEStructure.

In the case that a user wants to decode into a Windows* DIB, the buffer
size calculation above could possibly return an incorrect size. If a user
wants to ensure the four (4) byte alignment of the buffer, as per the
definition of a Windows DIB, he should use the_DIB_PAD BYTES

macro included in th@.n header file. This macro definition is given by

#define 1JL_DIB_PAD_BYTES(width,nchannels) \

Inside the Library

(((width * nchannels) + (sizeof(DWORD) - 1)) & (
~(sizeof(DWORD) - 1)) - (width * nchannels))

The correspondingiBPadBytes value can be easily calculated as

jcprops.DIBPadBytes = IJL_DIB_PAD_BYTES(width,nchannels)

wherewidth is the image width in pixels, anadchannelss the number of
channels. The following code segment illustrates how to decode a JPEG
image to a Windows DIB.

I

/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file to Windows DIB.

I

BOOL DecodeJPGFileToDIB(

LPCSTR

IpszPathName,

BITMAPINFOHEADER** dib)

{
BOOL

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
BYTE*

bres;

IJLERR jerr;

width;

height;
nchannels;
dib_line_width;
dib_pad_bytes;
wholeimagesize;

buffer = NULL;

BITMAPINFOHEADER* bmih = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

bres = TRUE;

_try
{

/I Initialize the IntelR JPEG Library.

jerr =

ijlinit (&jcprops);

if(IJL_OK != jerr)

5-11

Intel® JPEG Library Developer’s Guide

5-12

{
bres = FALSE;

__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

jerr = ijlRead (&jcprops,lJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
/I Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

/I Compute DIB padding
dib_line_width = width * nchannels;
dib_pad_bytes = IJL_DIB_PAD_BYTES(width,nchannels);

/I Compute size of desired pixel buffer.
wholeimagesiz e = (dib_line_width + dib_pad_byte s) * height;

/I Allocate memory to hold the decompressed image data.
buffer = new BYTE [sizeof(BITMAPINFOHEADER) + wholeimagesize];
if(NULL == buffer)
{
bres = FALSE;
__leave;

}

bmih = reinterpret_cast<BITMAPINFOHEADER*>(buffer);

bmih->biSize = sizeof(BITMAPINFOHEADER);
bmih->biWidth = width;

bmih->biHeight = height;

bmih->biPlanes = 1,

Inside the Library

bmih->biBitCount = 24;
bmih->biCompression = BI_RGB;
bmih->biSizelmage = 0;

bmih->biXPelsPerMeter = O;
bmih->biYPelsPerMeter = 0
bmih->biClrUsed =
bmih->biClrimportant = 0;

1

Set up the info on the desired DIB properties.

jcprops.DIBWidth = width;

jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;

jcprops.DIBColor = IJL_BGR;

jcprops.DIBPadBytes

dib_pad_bytes;

jcprops.DIBBytes = reinterpret_cast<BYTE*>(buffer +
sizeof(BITMAPINFOHEADER));

1
1
1
1
1
1
1
1

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{

case 1:

{
jeprops.JPGColor = IJL_G;
break;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;

break;

}

default:

5-13

Intel® JPEG Library Developer’s Guide

5-14

/I This catches everything else, but no

/I color twist will be performed by the IJL.

jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;

break;
}
}
/I Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops,lJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y Ity
_ finally
if(FALSE == bres)
{
if(NULL != buffer)
{
delete [] buffer;
buffer = NULL;
}
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);

*dib = bmih;
} /I __finally

return bres;
} /I DecodeJPGFileToDIB()

Inside the Library

Creating a JPEG Image

Algorithm for “Normal Encoding of a JPEG Image”:

1. Initialize the IJL.

2. Set up encoding parameters (if different than the default values).
3. Write image data to the IJL.

4. Close the 1JL.

The following code segment illustrates how to use the IJL to encode a JFIF
image from a pixel buffer. Please referAppendix B - Data Structure and
Type Definitiondor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

I
/I An example using the IntelR JPEG Library:
/I -- Encode a JFIF file from Windows DIB.

I

BOOL EncodeJPGFileFromDIB(
LPCSTR IpszPathName,
BITMAPINFOHEADER* bmih)

{

BOOL bres;
IJLERR jerr;
DWORD dib_pad_bytes;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;

_try

{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);

if(IJL_OK != jerr)

5-15

Intel® JPEG Library Developer’s Guide

{
bres = FALSE;

__leave;

}

if(bmih->biBitCount != 24)

{
/I not supported palette images
bres = FALSE;
__leave;

}

dib_pad_bytes = IJL_DIB_PAD_BYTES(bmih->biWidth,3);

/I Set up information to write from the pixel buffer.

jcprops.DIBWidth = bmih->biWidth;

jcprops.DIBHeight = bmih->biHeight; // Implies a bottom-up DIB.

jcprops.DIBBytes = reinterpret_cast<BYTE*>(bmih) +
sizeof(BITMAPINFOHEADER);

jcprops.DIBPadBytes = dib_pad_bytes;

/I Note: the following are default values and thus

/I do not need to be set.

jcprops.DIBChannels = 3;

jcprops.DIBColor IJL_BGR,;

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = bmih->biWidth;
jcprops.JPGHeight = bmih->biHeight;

/I Note: the following are default values and thus
/I do not need to be set.

jcprops.JPGChannels = 3;

jcprops.JPGColor = IJL_YCBCR,;

jcprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
jcprops.jquality = 75; /I Select "good" image quality

/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops,lJL_JFILE_ WRITEWHOLEIMAGE);

5-16

Inside the Library

if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

Y I try

__finally

{
/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);

}

return bres;
} /I EncodeJPGFileFromDIB()

Interrupted Encoding and Decoding

The IJL is capable of interrupted encoding and decoding, and it may be
interrupted at any time by asserting the “interrupt” flag in the
JPEG_PROPERTIES]ata structure.

The IJL will return with statusIL_INTERRUPT_OK after completing
processing on the current Minimum Coded Unit (MCU). The encoding or
decoding process may be resumed at the same location by simply calling
the appropriatgiRead() orijiwrite() function. The user may
determine the location of the last decoded MCU viaigite andtop

entries in theoi 1JL_RECT structure inside o§PEG_PROPERTIES

For example, the following code segment reads one MCU of JPEG data
into a (previously specified) buffer, then it returns and repeats the process
until the entire image has been decoded. This function can be used to
periodically suspend the JPEG encoding or decoding process.

5-17

Intel® JPEG Library Developer’s Guide

I
/I An example using the IntelR JPEG Library:
/I -- Interrupted decoding.

I
/I In this example, we are doing full scale decoding.
/I It could also be any of the scaled decoding modes.

BOOL DecodeJPGFilelnterrupted(LPCSTR IpszPathName)
{

BOOL bres;

IJLERR jerr;

DWORD width;

DWORD height;

DWORD nchannels;

DWORD wholeimagesize;

BYTE* pixel_buf = NULL;

/I Allocate the 1L JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, JL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

5-18

Inside the Library

/I Set up local data.

width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

/I Compute size of desired pixel buffer.
wholeimagesize = (width * height * nchannels);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.

jcprops.DIBWidth = width;

jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;

jcprops.DIBColor = [JL_BGR;

jcprops.DIBPadBytes = 0;

jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be
/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream
/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are
/I reading JFIF files which means that 3 channel images
/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.
switch(jcprops.JPGChannels)
{
case 1:
{
jeprops.JPGColor = IJL_G;
break;

}

case 3:

5-19

Intel® JPEG Library Developer’s Guide

{
jcprops.JPGColor = IJL_YCBCR,;

break;

}

default:

/I This catches everything else, but no

/I color twist will be performed by the IJL.

jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

/I Since the ROI values are updated following
/I an interrupt. We need to "reset" the ROI
/I values so that we continue to process over
/I the entire image.
jcprops.jprops.roi.left = 0;
jcprops.jprops.roi.right = 0;
jcprops.jprops.roi.top = 0;
jcprops.jprops.roi.bottom = 0;

jcprops.jprops.interrupt = TRUE;

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
} while(IJL_INTERRUPT_OK == jerr);

1

/I ... now you probably want to do something with the
/I decompressed image like display it ...

1

Yty

__finally
{

5-20

Inside the Library

if(NULL != pixel_buf)
{

}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);
}

delete [] pixel_buf;

return bres;
} /I DecodeJPGFilelnterrupted()

I

/I An example using the IntelR JPEG Library:

/I -- Decode image row by row.

I

BOOL DecodeRowByRow(
LPCSTR IpszJpgName,
LPCSTR IpszBmpName)

{
int cnt;
int width;
int height;
int nchannels;
int bmp_pad;
int bmp_row_size;
int bmp_buf_size;
int current_row;
BOOL bres;
IJLERR jerr;
FILE* out_file = NULL;
BYTE* bmp_bits = NULL;
BYTE* bmp_row = NULL;
BYTE* bmp_buf = NULL;

LPBITMAPFILEHEADER Ipbmfh = NULL;
LPBITMAPINFOHEADER Ipbmih = NULL;
IJL_RECT local_roi;
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

5-21

Intel® JPEG Library Developer’s Guide

__try

/I Initialize the Intel(R) JPEG Library.
jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(IpszJpgName);

/I Get information on the JPEG image (i.e., width, height, and
channels).

jerr = ijlRead(&jcprops, 1JL_JFILE_READPARAMS);

if(IJL_OK != jerr)

{

bres = FALSE;

__leave;
}
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

bmp_pad = 1IJL_DIB_PAD_BYTES(width,nchannels);
bmp_row_size = (width * nchannels) + bmp_pad,;

/I allocate buffer to hold one row DIB data
bmp_row = new BYTE [bmp_row_size];

if(NULL == bmp_row)

{
bres = FALSE;

__leave;

}

memset(bmp_row,0,bmp_row_size);

5-22

Inside the Library

bmp_buf_size = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER)
+ bmp_row_size * height;

I

allocate buffer to hold entire DIB

bmp_buf = new BYTE [bmp_buf_size];

if(NULL == bmp_buf)

{

}

bres = FALSE;
__leave;

bmp_bits = reinterpret_cast<BYTE*>(bmp_buf +
sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER));

jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = bmp_pad;
jcprops.DIBBytes = bmp_row;

I
I
1
1
1
I
I
I

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{

case 1:

{

jcprops.JPGColor
break;

UL G;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;

break;

5-23

Intel® JPEG Library Developer’s Guide

}

default:

{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}

}

I
/I Below is main code to decode image row by row
I

current_row = 0;

do

{
/I ROl is one row
local_roi.left = 0;
local_roi.top = current_row;
local_roi.right = width;

local_roi.bottom = current_row + 1;
jcprops.jprops.roi = local_roi;

/I decode ROI
jerr = ijlRead(&jcprops, 1JL_JFILE_READENTROPY);

if(IJL_ROI_OK != jerr)
{
bres = FALSE;
__leave;

}

/I copy row data and reverse row order, to obtain bottom-left
DIB.

memcpy(bmp_bits + (heigh t - 1 - current_row) *
bmp_row_size,bmp_row,bmp_row_size);

5-24

Inside the Library

/I advance to next row
current_row++;

} while(current_row != height);

I

/I Now we have decoded image, and do anything on it.
/I For example write to file...

I

Ipbmfh = reinterpret_cast<LPBITMAPFILEHEADER>(bmp_buf);

Ipbmfh->bfType = 'MB;
Ipbmfh->bfSize = bmp_buf_size;
Ipbmfh->bfReservedl = 0;
Ipbmfh->bfReserved2 = 0;

Ipbmfh->bfOffBits = sizeof(BITMAPFILEHEADER) +
sizeof(BITMAPINFOHEADER);

Ipbmih = reinterpret_cast<LPBITMAPINFOHEADER>(bmp_buf +
sizeof(BITMAPFILEHEADER));

Ipbmih->biSize = sizeof(BITMAPINFOHEADER);
Ipbmih->biWidth = width;

Ipbmih->biHeight = height;

Ipbmih->biPlanes = 1,

Ipbmih->biBitCount 24,

Ipbmih->biCompression = BI_RGB;
Ipbmih->biSizelmage = 0;

Ipbmih->biXPelsPerMeter =
Ipbmih->biYPelsPerMeter = 0;
Ipbmih->biClrUsed 0;

Ipbmih->biClrimportant = 0;
out_file = fopen(lpszBmpName,"wb");
if(NULL == out_file)

{
bres = FALSE;

__leave;

5-25

Intel” JPEG Library Developer's Guide

}
cnt = fwrite(bmp_buf,sizeof(BYTE),|pbmfh->bfSize,out_file);

if(cnt != Ipbmfh->bfSize)

{
bres = FALSE;
__leave;
}
Y I __try
_ finally
if(NULL !'= bmp_row)
{
delete [] bmp_row;
}

if(NULL !'= bmp_buf)

delete [| bmp_buf;

}
if(NULL != out_file)
{
fclose(out_file);
}

/I Clean up the IntelR JPEG Library.
ijIFree(&jcprops);
}

return bres;
} /I DecodeRowByRow()

5-26

Inside the Library

=

An example using the IntelR JPEG Library:
/Il -- Encode image by one MCU at a time.

/*

/I get_dib_parameters()

1l

/Il Purpose

1l gets image sizes from BMP file

/I Parameters
Il FILE* bmp_file - input BMP file to gets data from

Il int* width - pointer to variable to store image width

Il int* height - pointer to variable to store image height

1l int* nchannels - pointer to variable to store image number of
channels

1l

/I Returns

Il 0 - if read was successfully, if bmp_file is valid 24 bits per
pixel bitmap

1! -1 - if error has occured
Il
*/

static int get_dib_parameters(
FILE* bmp_file,
int* width,
int* height,
int* nchannels)

int res;
int cnt;
BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

cnt = fread(&bfh,sizeof(BYTE),sizeof(BITMAPFILEHEADER),bmp_file);
ificnt 1= sizeof(BITMAPFILEHEADER))
{

res = -1;

5-27

Intel® JPEG Library Developer’s Guide

5-28

goto Exit;
}

if(bfh.bfType 1= 'MB')
{

res = -1;
goto Exit;

}

cnt = fread(&bih,sizeof(BYTE),sizeof(BITMAPINFOHEADER),bmp_file);

ificnt 1= sizeof(BITMAPINFOHEADER))
{

res = -1;
goto Exit;
}

if(bih.biBitCount != 24 || bih.biCompression != Bl_RGB)
{

res = -1;

goto Exit;
}
*width = bih.biwidth;
*height = bih.biHeight;
*nchannels = 3;

res = 0;

Exit:

return res;

} /I get_dib_parameters()

/*
1
1
I
I
I

get_dib_chunk_data()

Purpose
gets chunk of data from BMP file.

Inside the Library

/I Parameters

Il FILE* bmp_file - input BMP file to gets data from

Il int dib_chunk_size - size of chunk of data

1l BYTE* dib_chunk_ptr - pointer to store data

1l

/I Return

Il 0 - if read was successfully, even if have reached the end of a
file

/I -1 - if error has occured

1l

/I Note

1l It is assumed that the file pointer has a correct position.

Il For bottom-up DIBs, it is necessary to invert the order of scan
lines

Il that is read from a file. Here for simplification we do not make
it.

1l

*/

static int get_dib_chunk_data(
FILE* bmp_file,
int dib_chunk_size,
BYTE* dib_chunk_ptr)

{ .
int cnt;
int res;

res = 0;
cnt = fread(dib_chunk_ptr,sizeof(BYTE),dib_chunk_size,bmp_file);

ifcnt < dib_chunk_size)
{ res = ferror(bmp_file);
if(0 = res)
{
res = -1;
}
}

return res;
} /I get_dib_chunk_data()

5-29

Intel® JPEG Library Developer’s Guide

/*

/I ijl_compress_large_dib()

I

/I Purpose

1l to demonstrate one techniques to compress large DIBs
1l on mcu line by mcu line basis.

1

/I Parameters
1l char* bmp_file - ASCIIZ string with input BMP file name
1l char* jpg_file - ASCIIZ string with output JPG file name

Il

/I Returns

Il 0 - if success

1! -1 - if error has occured
Il

*/

static int ijl_compress_large_dib(
char* bmp_name,
char* jpg_name)

{ . .
int i;
int IE
int res;
int width;
int height;
int mcu_width;
int mcu_height;
int num_x_mcu;
int num_y_mcu;
int dib_line_size;
int nchannels;
int dib_chunk_size;
BYTE* dib_chunk_ptr;
FILE* bmp_file;
IJLERR jerr;

JPEG_CORE_PROPERTIES jcprops;
dib_chunk_ptr = NULL;

bmp_file = fopen(bmp_name,"rb");

5-30

Inside the Library

if(NULL == bmp_file)
{

res -1;
goto Exit;

}

/I read source image parameters

res =
if(res = 0)
{
goto Exit;
}
jerr = ijlinit(&jcprops);

if(IJL_OK != jerr)
{

res = -1;
goto Exit;

}

jcprops.DIBChannels
jcprops.DIBWidth
jcprops.DIBHeight
jcprops.DIBPadBytes
jcprops.DIBColor
jcprops.DIBSubsampling

jcprops.JPGFile

jcprops.JPGBytes
jcprops.JPGSizeBytes

jcprops.JPGChannels
jcprops.JPGWidth
jcprops.JPGHeight
jcprops.JPGColor
jcprops.JPGSubsampling

jcprops.jquality

get_dib_parameters(bmp_file,&width,&height,&nchannels);

nchannels;

= width;

= height;
IJL_DIB_PAD_BYTES(width,nchannels);
IJL_BGR;
(IJL_DIBSUBSAMPLING)IJL_NONE;

= jpg_name;

= NULL;
0

nchannels;
width;
height;
IJL_YCBCR,;
1IJL_411;

75;

5-31

Intel® JPEG Library Developer’s Guide

5-32

/I sizes of mcu depend on subsampling

switch(jcprops.JPGSubsampling)

{

case IJL_NONE:
mcu_width =
mcu_height =
break;

8;
8;

case JL_422:
mcu_width =1
mcu_height = 8;
break;

6;

case JL_411:
mcu_width = 16;
mcu_height = 16;
break;

default:
res = -1;
goto Exit;
}
/I calculate number of mcu in image
num_x_mcu = (width + mcu_width - 1) / mcu_width;
num_y_mcu = (height + mcu_height - 1) / mcu_height;

dib_line_size = width * nchannels +

IJL_DIB_PAD_BYTES(width,nchannels);

dib_chunk_size = dib_line_size * mcu_height;

/I allocate memory to hold one mcu line
dib_chunk_ptr = new BYTE [dib_chunk_size];

if(NULL == dib_chunk_ptr)
{

res = -1;

goto Exit;
}

/I make illusion to IJL, that it is work with buffer

Inside the Library

jcprops.DIBBytes = dib_chunk_ptr;

/I process num_y mcu line
forG = 0 ; j < num_y_mcu; j++)

{

job)

/I get next mcu line from BMP file
res = get_dib_chunk_data(bmp_file,dib_chunk_size,dib_chunk_ptr);

if(res = 0)
{

goto Exit;
}

/I it is actually used pointer
jcprops.jprops.state.DIB_ptr = dib_chunk_ptr;

/I process num_x_mcu in mcu line
for(= 0 ; i < num_x_mcu; i++)

/I interrupt after each mcu
jcprops.jprops.interrupt = 1;

/I compress current mcu (advance pointer to next mcu is internal

jerr = ijlWrite(&cprops,lJL_JFILE_ WRITEWHOLEIMAGE);

if(IJL_INTERRUPT_OK == jerr)

{
/I current mcu was encoded successfully
continue;

}

if(IJL_OK == jerr)

{
/I job is complete: all image is processed
res = 0;
break;

}

if(IJL_OK > jerr)

{

/I error occured

5-33

Intel® JPEG Library Developer’s Guide

res = -1;
break;
}
}
}

/I if after processing num_y _mcu lines the library returns
IJL_INTERRUPT_OK,

/I it is to mean that some data are still keeping in internal
buffers. Need to flush it.

if(IJL_INTERRUPT_OK == jerr)

{
/I flush data from internal buffers
jcprops.jprops.interrupt = 1;
jerr = ijlWrite(&jcprops,lJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
res = -1;
goto Exit;
}
}
res = 0;
Exit:

if(NULL != bmp_file)
{

fclose(bmp_file);

}
if(NULL !'= dib_chunk_ptr)

delete [] dib_chunk_ptr;
}

ijIFree(&jcprops);

return res;
} /1 ijl_compress_large_dib()

5-34

Inside the Library

Rectangle-

I

of-Interest Decoding

Frequently only a portion of an image needs to be decompressed and
displayed on the screen at any time. For example, a portion of a JPEG
image may be displayed and “panned” at the user’s request. Using this
model, an application’s architecture becomes much more efficient and the
end-user gets to see the decoded image displayed in a significantly shorter
amount of time.

To efficiently manage these situations, an application may request a
rectangle-of-interest (ROI) to be decoded from the JPEG image by filling
in thelJL_RECT structure inlPEG_PROPERTIESDefore decoding image
data. Subsequent accesses to the IJL may be accelerated by simply
modifying the ROI values and callingRead()

The IJL uses several technologies designed to quickly access a given ROI
in an image, and stores information from previous ROI passes to speed
“panning” around an image.

The following code segment illustrates ROI decoding to fill an image
buffer in two passes.

/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file using
/I the Rectangle-Of-Interest (ROI) method.

I

BOOL DecodeJPGFileByROI(LPCSTR IpszPathName)

{

BOOL
IJLERR
DWORD
DWORD
DWORD
DWORD
BYTE*

IJL_RECT

bres;

jerr;

width;

height;

nchannels;

wholeimagesize;
pixel_buf = NULL;
local_roi;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

5-35

Intel® JPEG Library Developer’s Guide

5-36

bres = TRUE;
__try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).

jerr = ijlRead (&jcprops, 1JL_JFILE_READPARAMS);
if(1IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
/I Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

/| Decode int o a 3 channel pixel buffer.

/I For this example, we will allocate an image buffer half
/I as big as the input image. Then, we will decode the

/I top half and bottom half of the image separately.

/I This could of course be extended to partition the image
/I into several rectangular tiles which would require a small
/I (or fixed size) image buffer. This technique yields

/I greatly increased memory performance for most

/I applications!

wholeimagesize = width * ((height + 1) >> 1) * nchannels;

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];

Inside the Library

if(NULL == pixel_buf)

{

bres = FALSE;

__leave;
}
/I Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
/I Set a bottom-up DIB of half the original image size.
jcprops.DIBHeight = (height + 1) >> 1,

jcprops.DIBChannels = nchannels;

jcprops.DIBColor = |JL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be

/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream

/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are

/I reading JFIF files which means that 3 channel images

/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.

switch(jcprops.JPGChannels)

case 1:

{

jcprops.JPGColor
break;

UL G;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;
break;

}

default:
/I This catches everything else, but no

/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;

5-37

Intel® JPEG Library Developer’s Guide

5-38

jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;

break;
}
}
/I Get the top half of the image.
local_roi.left = 0;
local_roi.top = 0;
local_roi.right = width;

local_roi.bottom = (height + 1) >> 1;
jcprops.jprops.roi = local_roi;

/I Now actually get the top half of the JPEG image data
/I into the pixel buffer.

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{
bres = FALSE;
__leave;
}

/I ... now you probably want to do something with the
/I decompressed top half of the image like display it ...

/I Next, get the bottom half of the image.

local_roi.left = 0;
local_roi.top = (height + 1) >> 1;
local_roi.right = width;

local_roi.bottom = height;
jcprops.jprops.roi = local_roi;

/I Now actually get the bottom half of the JPEG image data
/I into the pixel buffer.

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{

bres = FALSE;

__leave;

Inside the Library

}

/I ... now you probably want to do something with the
/I decompressed bottom half of the image like display it ...
/i

Yoty
__finally
{
if(NULL !'= pixel_buf)
{
delete [] pixel_buf;
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);
}

return bres;
} /I DecodeJPGFileByROI()

5-39

Intel” JPEG Library Developer's Guide

Scaled Decoding

Most JPEG images can be efficiently decoded at 1/2, 1/4, or 1/8 the
original image resolution. This is known as “scaled decoding”, and it is
typically at least two times faster than decoding an entire image. The IJL
supports scaled decoding in parallel with rectangle-of-interest and
interrupted decoding.

In practice, scaled decoding is very useful for generating “thumbnails”
from JPEG images that do not already contain a thumbnail embedded in
their bit stream.

The following table (Table 5-1) shows the calculations needed to determine
the resulting scaled image size from an original JPEG image of size
(Width x Height).

Table 5-1 Scaled Decoding Calculations

Scaled

Decoding Type Resulting Width’ & Height’ 1/0 Type Specifier

1/2 Size Width’ = INT((Width + 1) / 2) IJL_IXXXX READONEHALF
Height' = INT((Height + 1) / 2)

1/4 Size Width’ = INT((Width + 3) / 4) IJL_JXXXX_READONEQUARTER
Height' = INT((Height + 3) / 4)

1/8 Size Width’ = INT((Width + 7) / 8) 1JL_JXXXX_READONEEIGHTH

Height' = INT((Height + 7) / 8)

To compute the size of the scaled image, use the following macro,
included in thajl.h file:

IJL_DIB_SCALE_SIZE(jpgsize, scale) =
(((jpgsize)+(scale)-1)/(scale))

For example, an image of 2407 x 491 pixels would have a 1/8 scaled size
of 301 x 62 pixels.

5-40

Inside the Library

The following code illustrates scaled decoding of a JPEG image to generate
a 1/8 sized version of the original JPEG image.

I
/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file.
/I using the scaled decoding method.

I

BOOL DecodeJPGFileOneEighth(LPCSTR IpszPathName)
{

BOOL bres;

IJLERR jerr;

DWORD width;

DWORD height;

DWORD nchannels;

DWORD wholeimagesize;

BYTE* pixel_buf = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

5-41

Intel® JPEG Library Developer’s Guide

5-42

}

/I Set up local data.
/I Note: In this case, width and height are rounded
/I to the nearest factor of eight.

width = (jcprops.JPGWidth + 7) >> 3;
height = (jcprops.JPGHeight + 7) >> 3;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

wholeimagesize = (width * height * nchannels);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)

{

bres = FALSE;

__leave;
}
/I Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be

/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream

/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are

/I reading JFIF files which means that 3 channel images

/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.

switch(jcprops.JPGChannels)

case 1:

{
jeprops.JPGColor = IJL_G;
break;

}

Inside the Library

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;
break;

}

default:

{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER,;
break;

}

}

/I Now get the actual JPEG image data into the pixel buffer
/Il and scale the output to 1/8 th the original size.
jerr = ijlRead (&jcprops, IJL_JFILE_READONEEIGHTH);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

1

/I ... now you probably want to do something with the
/I decompressed scaled image like display it ...

1

__finally
if(NULL !'= pixel_buf)
{

delete [] pixel_buf;
}

/I Clean up the IntelR JPEG Library.

5-43

5

Intel” JPEG Library Developer's Guide

5-44

ijlIFree

}

return bres;

(&jcprops);

} /I DecodeJPGFileOneEighth()

Embedded Thumbnail Decoding

The IJL supports decoding some types of thumbnails embedded in JFIF
compliant images. Specifically, the IJL supports decoding of
uncompressed RGB thumbnails (either 1 byte/pixel or 3 bytes/pixel) as
stored in accordance with the JFIF specification versions 1.01 and 1.02.
Thumbnails compressed using JPEG are not supported at this time.

Before attempting to decode an embedded thumbnail, the user must
provide a 24-bit DIB of at least 256x256 pixels. This is because the
maximum dimensions of an embedded JFIF thumbnail are 256x256 pixels.
Also, if the user wants the thumbnail decoded into packed 24-bit RGB
values, then theiBColor field needs to be set toL_RGB (otherwise it

will be decoded into packed 24-bit BGR values).

Then, in order to actually decode the embedded thumbnail, the user needs

to set theJLIOTYPE parameter talL_JXXXX_READTHUMBNAILWhen

callingijRead() . ThisIJLIOTYPE may be used interchangeably with

1JL_JXXXX_READPARAM®DN JFIF images. After this function call, the

JPEG_CORE_PROPERTIEdata structure is updated as follows:

1. The thumbnail's width and height (in pixels) are stored in the
JPGThumbWidth andJPGThumbHeight fields (values of O indicate no
embedded thumbnail present or an unsupported thumbnail), and

2. Decoded pixel values are placed into the buffer pointed to by the
DIBBytes field.

In practice, embedded thumbnails have been only rarely found in standard
(i.e., non-proprietary) formats in typical JPEG images. The IJL does not
support proprietary embedded thumbnails.

Inside the Library

Progressive Image Support

Decoding of Progressive DCT-based JPEG images is supported by the IJL.
Progressive image decoding is transparent to the end user and requires no
special support from the developer (i.e., the IJL does not support
progressive display of the image).

Starting from version 1.5, the IJL supports authoring (encoding) of
progressive images (note that restart intervals for encoding are not
currently supported).

To create a progressive JPEG image, the user should call the library

functionijiwrite() with the progressive found field setto 1 in the
JPEG_PROPERTIESstructure. The following code sequence may serve as
an example:

JPEG_CORE_PROPERTIES jcprops;
ijlinit (&jcprops);

/I Requestto create a progressive image
jcprops.jprops.progressive_found = 1;

ijiwrite (&cprops,lIL_JXXXX_WRITEWHOLEIMAGE);

The resulting image can be written either to a fileij(ifrite() is called
with second parameter setite_JFILE_ WRITEWHOLEIMAGE) or a
previously allocated memory buffer (for calls with
IJL_JBUFF_WRITEWHOLEIMAGE

The progressive encoding algorithm, which can be either successive
approximation or spectral selection, and the number of scans, are fixed in
the library and cannot be changed by the user. These parameters are set
depending on the number of channels and color space of the JPEG image.
The library supports the following sets of progressive encoding parameters:

for 1-channelJL_G images:
scan count is 6, with parameters per each pass as

5-45

Intel” JPEG Library Developer's Guide

5-46

1 scan; DC component 0; ss = 0, se = 63; ah =0, al = 1
2 scan; AC component 0; ss = 1, se =5, ah =0, al =2
3 scan; AC component O0; ss = 6, se = 63; ah = 0, al = 2
4 scan; AC component 0; ss = 1, se = 63; ah = 2, al = 1
5 scan; DC component 0; ss = 0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelJL_YCBCR images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 2

3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 2

4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 2

5 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2

6 scan; AC component 0; ss = 1, se = 63; ah =2, al = 1

7 scan; DC components 0,1,2; ss = 0, se = 63; ah = 1, al = 0
8 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0

9 scan; AC component 1; ss = 1, se = 63; ah = 1, al = 0

10 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelJL_RGB images:
scan count is 8, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al =0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0

7 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0

8 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

for 3-channelJL_OTHER images:
scan count is 8, with parameters per each pass as

scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
scan; AC component 0; ss = 1, se = 5; ah = 0, al =
scan; AC component 1; ss 1, se =5, ah =0, al =
scan; AC component 2; ss = 1, se = 5; ah = 0, al =
scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
scan; AC component 0; ss = 63; ah =0, al = 0
scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

(el eNe]

oO~NO O WN P

Inside the Library

for 4-channelJL_RGBA_FPX images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se =5, ah =0, al =0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; AC component 3; ss = 1, se =5, ah =0, al =0

6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al =0
7 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0

8 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0

9 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0
for 4-channelJL_YCBCRA_FPXimages:

scan count is 11, with parameters per each pass as

1 scan; DC components 0,1,2, 3; ss =0, se = 63' ah =0, al =1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 2

3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 1

4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 1

5 scan; AC component 3; ss = 1, se = 63; ah = 0, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2

7 scan; AC component 0; ss = 1, se = 63; ah =2, al =

8 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 1, aI =0
9 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0

10 scan; AC component 1; ss = 1, se = 63; ah = 1, al =
11 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 4-channelJL_OTHER images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; AC component 3; ss = 1, se = 5, ah =0, al =0

6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al =0
7 scan; AC component 0; ss = 6, se = 63; ah O al =0

8 scan; AC component 1; ss = 6, se = 63; ah = al =0

9 scan; AC component 2; ss = 6, se = 63; ah = 0, aI =0

10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0

5-47

Intel” JPEG Library Developer's Guide

In the above list we use the following notation:

ss —the first index in the spectral selection band;

se —the last index in the spectral selection band;

ah — the highest bit in the successive approximation;
al —the lowest bit in the successive approximation.

Accessing JPEG Images From a Buffer

JPEG is used as a compression standard in the FlashPix and TIFF 6.0 file
formats, and the I1JL supports decoding of data from these sources.
FlashPix and/or TIFF codecs may extract JPEG data and provide a buffer
(as opposed to a file) to the 1JL, or they may require JPEG data to be
buffered before output.

Note that the 1JL allows JPEG data to be read from, or written to, a buffer
in all access modes. Certain applications may find buffer-based JPEG
access significantly faster than file-based JPEG access.

To write JPEG data to a buffer, do the following:
« Allocate a buffer of sufficient size (usually the buffer equal to the size
of uncompressed data will suffice). If the buffer size is not enough, the
IJL will return the error cod&)L_BUFFER_TOO_SMALL
« Set the necessary fields in theEG_CORE_PROPERTIEStructure as
JPGFile = NULL
JPGBytes = pointer to the allocated buffer
JPGSizeBytes = buffer size in bytes
* Call theijiwrite() function with1JL_JBUFF_WRITEWHOLEIMAGE
as its second parameter. On return, the buffer will contain the created
JPEG data, and therGsSizeBytes field will specify the actual JPEG
data size in bytes. Note that earlier library versions returned incorrect
JPEG data size in the buffer and replaced the pointer to the buffer. This
bug was fixed in the current IJL version .

To decode JPEG data from a buffer, follow these steps:
* Get the buffer with JPEG data

» Set the fields in thePEG_CORE_PROPERTIEStructure as
JPGFile = NULL

5-48

Inside the Library

JPGBytes = pointer to the buffer with JPEG data
JPGSizeBytes = buffer size in bytes
e Call theijlRead() function withlJL_JBUFF_READEWHOLEIMAGES
its second parameter.

The code examples below illustrate how to read JPEG data from a buffer,
or write them to a buffer.
/I
/I An example using the Intel(R) JPEG Library:

/I -- Decode image from a JFIF buffer.
I

BOOL DecodeFromJPEGBuffer(
BYTE* IpJpgBuffer,
DWORD dwJpgBufferSize,
BYTE** IppRgbBuffer,
DWORD* IpdwWidth,
DWORD* IpdwHeight,
DWORD* IpdwNumberOfChannels)

BOOL bres;

IJLERR jerr;

DWORD dwWholelmageSize;
BYTE* IpTemp = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

_try
{
/I Initialize the Intel(R) JPEG Library.
jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).

5-49

Intel® JPEG Library Developer’s Guide

jcprops.JPGFile
jcprops.JPGBytes

NULL,;
IpJpgBuffer;

jcprops.JPGSizeBytes = dwJpgBufferSize;

jerr = ijlRead(&jcprops, 1JL_JBUFF_READPARAMS);
if(IJL_OK != jerr)

{

}

1
1
1
1
1
1
1
1

bres = FALSE;
__leave;

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

5-50

case 1:

{
jcprops.JPGColor
jcprops.DIBColor
jcprops.DIBChannels
break;

}

UL_G;
IJL_RGB;
3;

case 3:

{
jcprops.JPGColor
jcprops.DIBColor
jcprops.DIBChannels
break;

}

IJL_YCBCR;
IJL_RGB;
3;

default:

{

/I This catches everything else, but no
/I color twist will be performed by the IJL.

Inside the Library

jcprops.JPGColor
jcprops.DIBColor

jcprops.DIBChannels

break;

}
}

IJL_OTHER;
IJL_OTHER;
jcprops.JPGChannels;

/I Compute size of desired pixel buffer.
dwWholelmageSize = jcprops.JPGWidth * jcprops.JPGHeight *

jcprops.DIBChannels;

/I Allocate memory to

hold the decompressed image data.

IpTemp = new BYTE [dwWholelmageSize];

if(NULL == IpTemp)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.

jcprops.DIBWidth =
jcprops.DIBHeight =
jcprops.DIBPadBytes =
jcprops.DIBBytes =
/I Now get the actual
jerr = ijlRead(&jcprops,
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

Y

__fry

__finally
{
if(FALSE == bres)
{
if(NULL != IpTemp)
{
delete [] IpTemp;

jcprops.JPGWidth;
jeprops.JPGHeight;
0;

JPEG image data into the pixel buffer.
IJL_JBUFF_READWHOLEIMAGE);

5-51

Intel® JPEG Library Developer’s Guide

IpTemp = NULL;
}
}

/I Clean up the Intel(R) JPEG Library.
ijIFree(&jcprops);

*lpdwWidth = jcprops.DIBWidth;
*lpdwHeight = jcprops.DIBHeight;
*lpdwNumberOfChannels = jcprops.DIBChannels;
*|ppRgbBuffer = |pTemp;

} /I __finally

return bres;
} /I DecodeFromJPEGBUuffer()

I
/I An example using the Intel(R) JPEG Library:
/I -- Encode Windows DIB to JPEG buffer.

I

BOOL EncodeToJPEGBuffer(
BYTE* IpRgbBuffer,
DWORD dwWidth,
DWORD dwHeight,
BYTE** IppJpgBuffer,
DWORD* IpdwJpgBufferSize)

BOOL bres;

IJLERR jerr;

DWORD dwRgbBufferSize;
BYTE* IpTemp;

/I Allocate the 1L JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

_try
{
/I Initialize the Intel(R) JPEG Library.

5-52

Inside the Library

jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

dwRgbBufferSize = dwWidth * dwHeight * 3;

IpTemp = new BYTE [dwRgbBufferSize];
if(NULL == IpTemp)
{

bres = FALSE;

__leave;

}

/I Set up information to write from the pixel buffer.
jcprops.DIBWidth = dwWidth;
jcprops.DIBHeight dwHeight; // Implies a bottom-up DIB.

jcprops.DIBBytes = IpRgbBuffer;
jcprops.DIBPadBytes = 0;
jcprops.DIBChannels = 3
jcprops.DIBColor = IJL_RGB,;
jcprops.JPGWidth = dwWidth;
jcprops.JPGHeight = dwHeight;
jcprops.JPGFile = NULL;
jcprops.JPGBytes = IpTemp;
jcprops.JPGSizeBytes = dwRgbBufferSize;
jcprops.JPGChannels = 3;
jcprops.JPGColor = IJL_YCBCR,;

jcprops.JPGSubsampling IJL_411; /I 4:1:1 subsampling.
jcprops.jquality = 75; /I Select "good" image quality

/Il Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite(&jcprops,lJL_JBUFF_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

5-53

Intel” JPEG Library Developer's Guide

5-54

Yty

}

finally

if(FALSE == bres)
{
if(NULL != IpTemp)
{
delete[] IpTemp;
IpTemp = NULL;
}
}

*lppJpgBuffer = IpTemp;
*lpdwJIpgBufferSize = jcprops.JPGSizeBytes;

/I Clean up the Intel(R) JPEG Library.
ijIFree(&jcprops);

return bres;

} /I EncodeToJPEGBUuffer()

Working with Raw DCT Coefficients

Starting from version 1.5, the library can read from and write into a JPEG
file the raw DCT coefficients. Here “raw DCT coefficients” mean the
quantized DCT coefficients. You should specify the pointers to the external
memory buffers for the DCT coefficients, using the
RAW_DATA_TYPES_STAT&ructure which serves this purpose. It contains
the array of pointersaw_ptrs and the control fieldlata_type . To work

with raw DCT coefficients, theata_type field must be set to O.

The code examples below illustrate how to work with raw DCT
coefficients: the first function decodes raw DCT coefficients from the
JPEG file, and the second one creates a JPEG file from the raw DCT
coefficients.

Inside the Library

Il
/I An example using the Intel(R) JPEG Library:

/I -- Decode raw DCT coefficients from the JPEG file;
1 create a JPEG file from the raw DCT coefficients.

I
#include "ijl.h"

#define MAX_RAW_QTBLS 4
#define MAX_RAW_HTBLS 8

typedef struct MY_PERSIST_STORAGE
{

/I raw quant tables

JPEGQuantTable rawquanttablesilMAX_RAW_QTBLS];

unsigned char quantizerfMAX_RAW_QTBLS][64];

int ngtables;
int maxquantindex;
int gprecision;

/I raw huffman tables

JPEGHuffTable rawhufftables]MAX_RAW_HTBLS];
unsigned char bitsf]MAX_RAW_HTBLS][16];
unsigned char vals[MAX_RAW_HTBLS][256];

int nhuffActables;
int nhuffDctables;
int maxhuffindex;

/I JPEG specific I/O data specifiers.

int JPGWidth;

int JPGHeight;

int JPGChannels;
IJL_COLOR JPGColor;
IJL_JPGSUBSAMPLING JPGSubsampling;
int progressive_found;

RAW_DATA_TYPES_STATE raw_coefs;

} MY_PERSIST_STORAGE;

5-55

Intel® JPEG Library Developer’s Guide

5-56

void init_persist_storage(MY_PERSIST_STORAGE* ps)

int i;

/I initialize raw quant tables

for(= 0 ; i < MAX_RAW_QTBLS; i++)

{
ps->rawquanttables|i].quantizer = &ps->quantizer|i][0];
ps->rawquanttables[i].ident = 0;

}

ps->nqtables
ps->maxquantindex
ps->gprecision = 0;

= 0;
= 0;

/I initialize raw huffman tables
forG = 0 ; i < MAX_RAW_HTBLS; i++)
{

ps->rawhufftablesi].bits

= &ps->hits]i][0];
ps->rawhufftables]i].vals =

&ps->valsl[i][0];
ps->rawhufftables[i].ident 0;
ps->rawhufftables[i].hclass 0;
}

ps->nhuffActables = 0;
ps->nhuffDctables = 0;
ps->maxhuffindex = 0;

ps->JPGWidth =0
ps->JPGHeight = 0;
ps->JPGChannels = 0;
ps->JPGColor = IJL_OTHER,;
ps->JPGSubsampling = IJL_NONE;
ps->progressive_found = 0;

0

ps->raw_coefs.data_type = 0;

ps->raw_coefs.raw_ptrs[0] = NULL;
ps->raw_coefs.raw_ptrs[1] = NULL;
ps->raw_coefs.raw_ptrs[2] = NULL;
ps->raw_coefs.raw_ptrs[3] = NULL;

Inside the Library

return;
} /I init_persist_storage()

void free_persist_storage(MY_PERSIST_STORAGE* ps)
{

int i;

/I delete buffers for raw DCT coefs
forG = 0 ;i< 4 i++)
{
if(NULL !'= ps->raw_coefs.raw_ptrs]i])
{
delete [] ps->raw_coefs.raw_ptrs]i];
ps->raw_coefs.raw_ptrs[i] = NULL;
}
}

return;
} /I free_persist_storage()

/*
/I get_raw_dct
1l
/I Purpose
Il decode raw DCT coefficient from JPEG image
1l
/I Parameters
1l input_file - input file name
Il ps - pointer to persistent storage for raw DCT coefs
1l
*/
int get_raw_dct(char* input_file,MY_PERSIST_STORAGE* ps)
{
int i
int res;
int size;

int num_mcus;
int dct_block_size;
IJLERR jerr;

5-57

Intel® JPEG Library Developer’s Guide

5-58

JPEG_CORE_PROPERTIES jcprops;
res = 0;
memset(&jcprops,0,sizeof(JPEG_CORE_PROPERTIES));

jerr = ijlinit(&jcprops);

if(IJL_OK != jerr)

{
printf("ijlinit() failed - %s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;

}

jcprops.JPGFile = input_file;

/i
/I supply buffers, to store raw quant tables
1
fori = 0 ;i < MAX_RAW_QTBLS; i++)
{
jcprops.jprops.rawquanttables|i].quantizer =
ps->rawquanttables[i].quantizer;
}
1
/I supply buffers, to store raw huffman tables
1
fori = 0 ;i < MAX_RAW_HTBLS; i++)
{
jcprops.jprops.rawhufftables]i].bits = ps->rawhufftablesi].bits;
jcprops.jprops.rawhufftablesli].vals = ps->rawhufftables]i].vals;
}
I

/I it will read raw JPEG tables to our buffers
Il

jerr = ijlRead(&jcprops,|JL_JFILE_READPARAMS);
if(IJL_OK != jerr)

Inside the Library

{
printf("ijlRead(IJL_JFILE_ READPARAMS) failed -
%s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;
}

I
/I store info about raw quant tables
I

ps->nqgtables
ps->maxquantindex

jcprops.jprops.nqtables;
jcprops.jprops.maxquantindex;

1

/l 1L can decode images with 16-bit quant tables,
/I but can't encode with 16-bit quant tables.

/I So, store this info, to check it before encoding
I

ps->qprecision = jcprops.jprops.jFmtQuant[0].precision;
for(= 0 ; i < jcprops.jprops.maxquantindex; i++)
{

ps->rawquanttables|i].ident =
jcprops.jprops.rawquanttablesyi].ident;

}

Il
/I store info about raw huffman tables
Il

cprops.jprops.nhuffActables;

ps->nhuffActables =
= jeprops.jprops.nhuffDctables;

j
ps->nhuffDctables = j

ps->maxhuffindex = jcprops.jprops.maxhuffindex;
for(= 0 ; i < jcprops.jprops.maxhuffindex*2; i++)
{

ps->rawhufftables|i].ident =
jcprops.jprops.rawhufftables]i].ident;

ps->rawhufftables[i].hclass =
jcprops.jprops.rawhufftables]i].hclass;

5-59

Intel® JPEG Library Developer’s Guide

5-60

}

I
/I store common JPEG image parameters to persist buffer

I

ps->JPGHeight = jcprops.JPGHeight;
ps->JPGWidth = jcprops.JPGWidth;
ps->JPGChannels = jcprops.JPGChannels;
ps->JPGColor = jcprops.JPGColor;

ps->JPGSubsampling = jcprops.JPGSubsampling;

I

/I allocate memory for raw DCT coefs buffers

1

dct_block_size = sizeof(short) * 8 *8§;

num_mcus = jeprops.jprops.numxMCUs * jcprops.jprops.numyMCUs;
for(= 0 ; i < jeprops.JPGChannels; i++)

int block_per_comp = jcprops.jprops.jframe.comps|il.hsampling *
jcprops.jprops.jframe.compsfi].vsampling;

size = dct_block_size * block _per_comp * num_mcus;
ps->raw_coefs.raw_ptrs[i] = new unsigned short [size];

if(NULL == ps->raw_coefs.raw_ptrsi])
{
printf("can't allocate memory for raw DCT coefs buffer\n");
res = 1,
goto Exit;
}
}

I
/I force read raw DCT coefs, instead full decoding

1

ps->raw_coefs.data_type = 0;
jcprops.jprops.raw_coefs = &ps->raw_coefs;

Inside the Library

jerr = ijlRead(&jcprops,|JL_JFILE_ READWHOLEIMAGE);
if(IJL_OK != jerr)
{
printf("ijlRead(lJL_JFILE_READWHOLEIMAGE) failed -
%s\n",ijlErrorStr(jerr));
res = 0;
goto Exit;

I
/I Note: for progressive images IJL can't store all huffman tables.
I

ps->progressive_found = jcprops.jprops.progressive_found;
Exit:

jerr = ijIFree(&jcprops);

if(IJL_OK != jerr)

{
printf("ijiFree() failed - %s\n",ijlErrorStr(jerr));
res = 1;

}

return res;
} /I get_raw_dct()

/*

/I put_raw_dct

1l

/I Purpose

1l encode JPEG image from raw DCT coefficient
1l

/I Parameters

1l output_file - output file name

Il ps - pointer to persistent storage for raw DCT coefs
1l

*/

5-61

Intel® JPEG Library Developer’s Guide

int put_raw_dct(char* output_file, MY_PERSIST_STORAGE* ps)

{
int i
int res = 0;
IJLERR jerr;

JPEG_CORE_PROPERTIES jcprops;
memset(&jcprops,0,sizeof(JPEG_CORE_PROPERTIES));

jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)

{
printf("ijlinit() failed - %s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;

}

jcprops.JPGFile = output_file;

1

/I The 1JL does not support encode with 16-bit quant tables,
/Il so try to use default quant tables instead of 16-bit tables.
1

/I Note, it can produce visible noise for image.

I

if(!ps->qprecision)

{
1
/I set custom raw quant tables
1

jcprops.jprops.nqtables
jcprops.jprops.maxquantindex

ps->nqtables;
ps->maxquantindex;

fori = 0 ; i < ps->nqtables; i++)
{
jcprops.jprops.rawquanttablesyil.ident =
ps->rawquanttablesi].ident;
jcprops.jprops.rawquanttables|il.quantizer =
ps->rawquanttables[i].quantizer;

5-62

Inside the Library

jcprops.jprops.use_external_qgtables = 1;

}

1
/I Use default huffman tables for progressive images
1

if(!ps->progressive_found)

{
/1l
/Il set custom raw huffman tables
Il

jcprops.jprops.nhuffActables ps->nhuffActables;
jeprops.jprops.nhuffDctables ps->nhuffDctables;
jcprops.jprops.maxhuffindex = ps->maxhuffindex;

fori = 0 ; i < jcprops.jprops.maxhuffindex*2; i++)
{
jcprops.jprops.rawhufftables]i].ident =
ps->rawhufftables[i].ident;
jcprops.jprops.rawhufftables]i].hclass =
ps->rawhufftables[i].hclass;
jcprops.jprops.rawhufftables]i].bits =
ps->rawhufftablesi].bits;
jcprops.jprops.rawhufftables]i.vals =
ps->rawhufftables[i].vals;

}

jcprops.jprops.use_external_htables = 1;

}

else

{
i

/I let 1JL use optimal huffman tables for progressive mode
1

jcprops.jprops.progressive_found = 1;

I

5-63

Intel® JPEG Library Developer’s Guide

/I set common JPEG image parameters
I

jcprops.JPGHeight = ps->JPGHeight;
jcprops.JPGWidth = ps->JPGWidth;
jcprops.JPGChannels = ps->JPGChannels;
jcprops.JPGColor = ps->JPGColor;

jcprops.JPGSubsampling ps->JPGSubsampling;

if(icprops.JPGChannels == 4)

jcprops.DIBColor = IJL_RGBA_FPX;
jcprops.DIBChannels = jcprops.JPGChannels;

}

Il
/I write JPEG from raw DCT coefs, that are contained in raw_coefs

I
jcprops.jprops.raw_coefs = &ps->raw_coefs;

1
/I jquality 50 - to not recalculate quant tables

I
jcprops.jquality = 50;

jerr = ijlWrite(&jcprops,lJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
printf("ijjWrite(IJL_JFILE_ WRITEWHOLEIMAGE) failed -
%s\n",ijlErrorStr(jerr));
res = 0;
goto Exit;

}
Exit:
jerr = ijIFree(&jcprops);

if(IJL_OK != jerr)

{
printf("ijiFree() failed - %s\n",ijIErrorStr(jerr));

5-64

Inside the Library

return 1;

}

return res;
} /I put_raw_dct()

Support of a Pixel-Interleaved YCbCr422 Format

Starting from version 1.5, the library supports a pixel-interleaved
YChCr422 format both as an input for the encoder and as an output for the
decoder. The decoder can decode into the pixel-interleaved 422 format
from the 422 sampled JPEG file only. Resampling is not currently
supported, which means that it is not possible to obtain data in the pixel-
interleaved YCbCr422 format from the 444- or 411- sampled JPEG file.

I
/I An example using the Intel(R) JPEG Library:
/I -- Decode image to YCbCr 422 format
I
int ijl_decompress_to_ychycr(
char* name,
BYTE** buffer,

int* width,

int* height)
{

int res;

BYTE* dib_buffer = NULL;

int dib_buffer_size;

IJLERR jerr;
JPEG_CORE_PROPERTIES jcprops;

jerr = ijlinit(&jcprops);
if(IJL_OK = jerr)

{
printf("ijlinit() failed - %s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;

}

jcprops.JPGFile = name;

5-65

Intel® JPEG Library Developer’s Guide

jerr = ijlRead(&jcprops,|JL_JFILE_READPARAMS);
if(IJL_OK != jerr)

printf("ijjRead() failed - %s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;

}

if(jcprops.JPGSubsampling != 1JL_422 || jcprops.JPGChannels != 3)

printf("only JPEG with 422 sampling can be decoded as YCBYCR DIB
with 422 sampling\n");
res = 1,
goto Exit;
}

dib_buffer_size = jcprops.JPGWidth * jcprops.JPGHeight *
jcprops.JPGChannels;

dib_buffer = new BYTE [dib_buffer_size];
if(NULL == dib_buffer)

{
printf("can't allocate memory\n");
res = 1;
goto Exit;
}
jcprops.DIBWidth = jcprops.JPGWidth;
jcprops.DIBHeight = -jcprops.JPGHeight;

2; /[l NOTE: we must set nchannels = 2
/I to decode as YCBYCR

jcprops.DIBChannels

jcprops.DIBBytes = dib_buffer;
jcprops.DIBPadBytes = 0;
jcprops.DIBColor = IJL_YCBCR;
jcprops.DIBSubsampling = 1JL_422;

jerr = ijlRead(&jcprops,|JL_JFILE_ READWHOLEIMAGE);
if(IJL_OK != jerr)

printf("ijjRead() failed - %s\n",ijlErrorStr(jerr));

res = 1;
goto Exit;

5-66

Inside the Library

}

res = 0;

*buffer = dib_buffer;

*width = jcprops.JPGWidth;

*height = jcprops.JPGHeight;
Exit:

jerr = ijIFree(&jcprops);

if(IJL_OK != jerr)

{
printf("ijiFree() failed - %s\n" ijlErrorStr(jerr));
res = 1,

}

ifres == 1)

{
if(NULL !'= dib_buffer)
{ delete[] dib_buffer;
}

}

return res;
} /1 ijl_decompress_to_ychycr()

I
/I An example using the Intel(R) JPEG Library:
/I -- Encode from YCbCr 422 format
I
int ijl_compress_from_ycbycr(

BYTE* buffer,

int width,

int height,

char* name)

int res = 0;
IJLERR jerr;
JPEG_CORE_PROPERTIES jcprops;

5-67

Intel® JPEG Library Developer’s Guide

jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)

printf("ijlinit() failed - %s\n",ijlErrorStr(jerr));

res = 1;

goto Exit;
}
jcprops.DIBWidth = width;
jcprops.DIBHeight = -height;
jcprops.DIBChannels = 3
jcprops.DIBBytes = buffer;
jcprops.DIBPadBytes = 0;
jcprops.DIBColor = |IJL_YCBCR;
jcprops.DIBSubsampling = 1JL_422;
jcprops.JPGFile = name;
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;
jcprops.JPGChannels = 3;
jcprops.JPGColor = IJL_YCBCR;
jeprops.JPGSubsampling = 1JL_422;
jcprops.jquality = 75;

jerr = ijlWrite(&cprops,lJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
printf("ijlinit() failed - %s\n",ijlErrorStr(jerr));
res = 1;
goto Exit;
}

Exit:

jerr = ijIFree(&jcprops);

if(IJL_OK != jerr)

{
printf("ijiIFree() failed - %s\n" ijlErrorStr(jerr));
res = 1,

}

return res;

} /1 ijl_compress_from_ycbycr()

5-68

Inside the Library

Odd Data Formats

Most of today’s JPEG files are stored in the JPEG File Interchange Format
(JFIF), and the IJL supports JFIF version 1.02. JFIF is a minimal file
format that enables JPEG bit streams to be exchanged between a wide
variety of platforms and applications. One feature of JFIF is that it
specifies a standard color space. JFIF files are stored using either the
3-channel luminance/chrominance color space (YCbCr as defined by CCIR
601 (256 levels)), or the 1-channel grayscale color space (only the Y
component of YCbCr).

However, the JPEG interchange format (not JFIF) defines compressed data
storage formats that allow a great deal of flexibility to the representation of
a set of data. A JPEG bit stream may have many meanings other than the
common JFIF 3-channel, 2-D interleaved plane image data.

A JPEG image does not necessarily contain any information that specifies
the color space of the image data. Any JPEG decoder is thus forced to
make assumptions about the color format of some JPEG images. Modern
file formats like TIFF 6.0 and FlashPix contain enough color space
information to avoid this ambiguity.

* JPEG is often called “color blind”. This is because nothing within a
JPEG bit stream indicates what color format was used to encode the
image data. When the color format of a JPEG image is unknown, or
not supported by the IJL (i.e., Adobe’s* CMYK), it is suggested that
the user specify theL_OTHER color space format for both the
JPGColor andDIBColor fields in theJPEG_CORE_PROPERTIEdata
structure. This technique prevents the IJL from applying a color space
conversion. Then, it becomes the user’s responsibility to perform their
own color space manipulation (if so desired) outside of the IJL.

« If a JPEG bit stream indicates that data will be stored in separate
planes, the IJL will present the data in a pixel-interleaved format. This
may cause unexpected results, especially for data represented using
multiple scans (i.e., one scan per block-row).

5-69

Pre- and Post-Processing

DIBs

Image data in a Device Independent Bitmap (DIB) is stored in a byte
interleaved form, one byte (8-bits) per channel. For the most common
type, the Windows 24-bit DIB, the data is stored in a form graphically

illustrated by Figure 6-1.

Figure 6-1 Windows 24-bit DIB Data Format

T T T

Pixel (0,0) Pixel (1,0) Pixel (n,0) Padding Pixel (0,1)
bytes added
to make DIB
linewidth lie
on 4-byte
boundary.

The IJL can receive as the encoder input and produce as the decoder output
data in the 4:2:2 subsampled pixel interleaved format which is illustrated in

Figure 6-2.

6-1

Intel” JPEG Library Developer's Guide

6-2

Figure 6-2 4:2:2 Subsampled Pixel-Interleaved Format

= 0

When authoring JPEG images, the IJL can receive input from a pixel
buffer. Likewise, when decoding JPEG images, the IJL can send the
output to a pixel buffer. The user has great freedom in specifying pixel
buffer formats with regards to the number of color channels, the color
space interpretation, and end-of-line padding.

The IJL supports input data with:

Interleaved color planes.

Non-subsampled data (with the exceptioniaf YCBCR color space,
in which case only 4:2:2 subsampled pixel interleaved data are
supported).

Color channels from 1 to 255.

Widths from 1 to 65,535.

Heights from -65,535 to 65,535 (where values > 0 indicate a
bottom-up DIB).

End-of-line padding, or pad bytes, must be >= 0.

Additionally, for thumbnail output DIBs, the width and the absolute value
of height must not exceed 255, and the color space must be either
3-channelJL_RGB or1JL_BGR.

Pre- and Post-Processing

IJL Color Spaces

The following table (Table 6-1) illustrates the various DIB and JPEG color
spaces supported by the 1JL.

Table 6-1 IJL Supported Color Spaces

Valid IJL Valid 1JL
DIB Color JPEG Color

IJL Color Space Space? Space? Description

JL_G Yes Yes Grayscale (luminance only) 1 channel color
space.

IJL_RGB Yes Yes RGB (red-green-blue) 3 or 4 channel color
space.

IJL_BGR Yes No RGB 3 channel color space where the byte
ordering has been reversed to BGR.

IJL_RGBA_FPX Yes Yes FlashPix RGB 4 channel color space with
pre-multiplied opacity.

IJL_YCBCR Yes Yes CCIR 601 YCbCr (luminance-chrominance)

3 channel color space. Starting from version
1.5, the 1JL supports the specific 4:2:2
subsampled pixel interleaved format used
both as input data format for encoding, and
output data format for decoding. In this case
the data sequence is setto be Y0-CbO-Y1-
Cr0-Y2-Cb1-Y3-Crl-... .

IJL_YCBCRA _FPX No Yes FlashPix YCbCr 4 channel color space with
pre-multiplied opacity and the YCbCr values
are stored "flipped" (i.e., X' = 255 - X).

IJL_OTHER Yes Yes Unknown color space where the user
specifies the number of channels.

ThelJL_G color space specifies that the DIB is stored in a Luminance only
format with 8-bits per channel. The color space is defined as the
Luminance (or Y) component of the standard YCbCr color space defined in
CCIR 601 for 256 levels (8-bit) per channel.

6-3

Intel” JPEG Library Developer's Guide

ThelJL_RGB color space follows the 8-bits per color channel definition of
the RGB color space. Data is stored Red, Green, Blue from the lowest to
the highest byte of a pixel.

ThelJL_BGR color space is similar to theL_RGB color space except the
byte order of the three channels are flipped. Data is stored Blue, Green,
Red from the lowest to the highest bytes of a pixel._BGR is supported

to provide fast input and output from standard Windows DIBs and Bitmaps
(which use a BGR byte order).

ThelJL_RGBA_FPX andlJL_YCBCRA_FPX color spaces are FlashPix 4
channel color spaces with pre-multiplied opacity and have been provided
for greater compatibility with FlashPix JPEG compressed files.

ThelJL_YCBCR color space is the standard YCbCr color space defined in
CCIR 601 for 256 levels (8-bit) per channel. This is the color space used
in most JPEG images and is supported by JFIF, EXIF, TIFF, FlashPix,
and SPIFF file formats among others. It is strongly recommended that
users author JPEG images in this color format (even when starting from a
monochrome or grayscale source). The YCBCRA_FPXcolor space is

not supported as valid DIB format for encoding.

ThelJL_OTHER color space is used for user-defined or unknown DIB color
spaces. The IJL will not perform any color space conversion when
decoding JPEG images to an_OTHER DIB color space. It will simply
copy the appropriate number of channels from the source JPEG image.

Subsampling

The one (1) channel grayscale color space is not allowed to be subsampled.

Three (3) channel color spaces are allowed to be subsampled in either the
4:1:1 or the 4:2:2 formats. The 4:1:1 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 2 in both
the second and third channels. The 4:2:2 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 1 in both
the second and third channels. The non-subsampled format, or 1:1:1, is

Pre- and Post-Processing

denoted by a horizontal sampling factor of 1 and a vertical sampling factor
of 1 in all three channels.

Four (4) channel color spaces are allowed to be subsampled in either the
4:1:1:4 or the 4:2:2:4 formats. The 4:1:1:4 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 2 in both
the second and third channels. The 4:2:2:4 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 1 in both
the second and third channels. The non-subsampled format, or 1:1:1:1, is
denoted by a horizontal sampling factor of 1 and a vertical sampling factor
of 1in all four channels. The fourth channel, the alpha channel, is never
allowed to be subsampled.

All neighboring pixels on a sampling interval are taken with equal weights
to form the resulting value.

Upsampling

The IJL decompresses images that can have arbitrary sampling factors and
maximum 10 blocks per each MCU, as compliant with JPEG standard. The
default algorithm for decoding subsampled imagesLisBOX_FILTER ,

which means that the decoded pixel value is simply replicated as many
times as the sampling factors indicate. If both horizontal and vertical
sampling factors do not exceed 2, you can use upsampling with triangular
filter, which yields better results. For this purpose, set the

upsampling_type field in theJPEG_PROPERTIESstructure to
IJL_TRIANGLE_FILTER .

In scaled decoding of subsampled images &emded Decodingwith
appropriately matching sampling factors (i.e. horizontal and vertical factors
are equal and do not exceed 2), upsampling can be replaced by performing
DCT of a larger size, which provides faster decoding with good image
quality results. The IJL implements that approach, for instance, in case of
scaled decoding of images at 1/2 size with upsampling 4:1:1.

6-5

Intel” JPEG Library Developer's Guide

6-6

Decoding and Post-Processing Matrix

The following table illustrates permitted color space decoding

combinations and post-processing options in the 1JL.

Table 6-2 IJL Decoding and Post-Processing Matrix
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
JL_G 1 UL_G 1 Y, Y, ... CC No & US No
JL_G 1 IJL_RGB 3 YYY, YYY, ... CC No & US No
JL_G 1 IJL_BGR 3 YYY, YYY, ... CC No & US No
(see note 1
below)
JL_G 1 IJL_RGBA_ 4 YYYO, YYYO, ... CC No & US No
FPX
IJL_RGB 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo & US
No
4:1:1 CC No & US
Yes
4:2:2 CCNo & US
Yes
1JL_RGB 3 IJL_BGR 3 BGR, BGR, ... 1:1:1 CC No & US

No

4:1:1 CC No & US
Yes

4:2:2 CC No & US
Yes

continued

Pre- and Post-Processing

Table 6-2 IJL Decoding and Post-Processing Matrix (continued)
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
IJL_RGB 3 IJL_RGBA_ 4 RGBO, RGBO, ... 1:1:1 CC No & US
FPX No
4:1:1 CC No & US
Yes
4:2:2 CC No & US
Yes
IJL_RGBA_ 4 IJL_RGBA_ 4 RGBA, RGBA, ... 1:1:1:1 CCNo &
FPX FPX (see note 2 US No
below) 4:1:1:4 CCNo &
US Yes
4:2:2:4 CC No &
US Yes
IJL_YCBCR 3 JL_G 1 Y,Y, 1:1:1 CCNo & US
No
4:1:1 CC No & US
Yes
4:2:2 CC No & US
Yes
IJL_YCBCR 3 IJL_YCBCR 2 Y0-Cb0-Y1-CrO- 4:2:2 CC No & US
Y2-Cb1-... (see No
note 4 below)
IJL_YCBCR 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCYes &

US No

4:1:1 CC Yes &
US Yes

4:2:2 CC Yes &
US Yes

continued

6-7

Intel” JPEG Library Developer's Guide

6-8

Table 6-2 IJL Decoding and Post-Processing Matrix ~ (continued)
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
IJL_YCBCR 3 IJL_BGR 3 BGR, BGR, ... 1:1:1 CCYes &
US No
4:1:1 CC Yes &
US Yes
4:2:2 CC Yes &
US Yes
IJL_YCBCR 3 IJL_RGBA_ 4 RGBO, RGBO, ... 1:1:1 CCYes &
FPX US No
4:1:1 CC Yes &
US Yes
4:2:2 CC Yes &
US Yes
IJL_YCBCRA_ 4 IJL_RGBA_ 4 RGBA, RGBA, ... 1:1:1:1 CCYes &
FPX FPX (see note 3 US No
below) 4:1:1:4 CYes &
US Yes
4:2:2:4 CYes &
US Yes
IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1), CC No & US if
X0..X(m-1), needed
IJL_OTHER n IJL_OTHER m=n X0..X(n-1), CC No & US if
X0..X(n-1), needed
IJL_OTHER n IJL_OTHER m>n X0..X(n- CC No & US if
1)En..E(m-1), needed
X0..X(n-
1)En..E(m-1),

Pre- and Post-Processing

Supporting Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwritten)

(0] Opaque value (i.e., for 8-bit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

us Upsample

SS Subsample

Supporting Notes:

1. Note, this is exactly the same as thie G to 1JL_RGB case.

2. Pursuant to the FlashPix specification, the pre-multiplied opacity is
preserved.

3. Pursuant to the FlashPix specification, an "inverse flip" (that is,
X =255- X") is performed and the pre-multiplied opacity is
preserved.

4. Starting from version 1.5, the |1JL suppoits YCBCR DIB color
space (currently fobiBSubsampling =1JL_422 only). Decoding is
implemented only fosPGSubsampling = 1JL_422.

Intel” JPEG Library Developer's Guide

6-10

Encoding and Pre-Processing Matrix

The following table illustrates permitted color space encoding
combinations and pre-processing options in the IJL.

Table 6-3 IJL Encoding and Pre-Processing Matrix

Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
JL_G 1 JL_G 1 Y, Y, ... CC No & SS No
JL_G 1 IJL_YCBCR 3 Y00, YOO, ... 1:1:1 CCNo & SS
(see note 1 No
below) 4:1:1 CCNo &SS
Yes
4:2:2 CCNo & SS
Yes
IJL_RGB 3 JL_G 1 Y, Y, ... CC Yes & SS No
IJL_RGB 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo&SS
No
4:1:1 CCNo &SS
Yes
4:2:2 CCNo & SS
Yes

continued

Pre- and Post-Processing

Table 6-3 IJL Encoding and Pre-Processing Matrix ~ (continued)
Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
IJL_RGB 3 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
4:1:1 CC Yes &
SS Yes
4:2:2 CC Yes &
SS Yes
IJL_RGB 4 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
(see note 2 4:1:1 CCYes &
below) SS Yes
4:2:2 CC Yes &
SS Yes
IJL_BGR 3 L_G 1 Y, Y, .. CC Yes & SS No
IJL_BGR 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo &SS
No
4:1:1 CCNo & SS
Yes
4:2:2 CCNo & SS
Yes
IJL_BGR 3 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
4:1:1 CC Yes &
SS Yes
4:2:2 CC Yes &
SS Yes
IJL_YCBCR 3 IJL_YCBCR 3 YCbCr, 4:2:2 CC No &
YCbCr, ... SS Yes
(see note 5
below)
continued

6-11

Intel” JPEG Library Developer's Guide

6-12

Table 6-3 IJL Encoding and Pre-Processing Matrix ~ (continued)
Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
IJL_RGBA_FPX 4 IJL_RGBA_FPX 4 RGBA, RGBA, 1:1:1:1 CCNo &
SS No
(see note 3 4:1:1:4 CCNo &
below) SS Yes
4:2:2:4 CC No &
SS Yes
IJL_RGBA _FPX 4 IJL_YCBCRA_FPX 4 YCbCrA, 1:1:1:1 CCYes &
YCbCrA, ... SS No
(see note 4 4:1:1:4 CCYes &
below) SS Yes
4:2:2:4 CCYes &
SS Yes
IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1), CC No &SSif
X0..X(m-1), needed
IJL_OTHER n IJL_OTHER m=n X0..X(n-1), CC No &SSiif
X0..X(n-1), needed

Pre- and Post-Processing

Supporting Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwritten)

(0] Opaque value (i.e., for 8-bit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

us Upsample

SS Subsample

Supporting Notes:

1.

The luminance values are retained and the chrominance values are set
to zero.

Assumes no pre-multiplied opacity.

Pursuant to the FlashPix specification, the pre-multiplied opacity is
preserved.

Pursuant to the FlashPix specification, a "flip" (i.e., X' = 255 - X) is
performed and the pre-multiplied opacity is preserved.

The data encoding fromBColor =1JL_YCBCR t0

JPGColor =I1JL_YCBCR is currently supported only for

DIBSubsampling =1JL_422 .

6-13

Advanced IJL Features

This section describes some advanced features and imaging techniques that
are possible with the 1JL.

Use of Processor-Specific Code

The IJL detects the processor type and chooses the best available
processor-specific code automatically (this is the default option). For
example, if you use IJL on a system with Intel® Pentium® 4 processor, the
library will take advantage of the code that has been specially optimized
for that processor type.

However, you can direct the library to use the required code version by
setting the USECPU key in the system registry to one of the following

values:

0 - Blended code must be used (option for all legacy processors)
4 - Code optimized for Pentium Il processor must be used

5 - Code optimized for Pentiumhi processor must be used

6 - Code optimized for Pentium 4 processor must be used

The USECPU key has the type DWORD and must be located at
HKEY_LOCAL_MACHINE\Software\intel Corporation\PLSuite\lJLib.

Setting the DCT Algorithm

The IJL supports two different DCT algorithms. The first one, set by
IJL_AAN field value, is based on the work of Arai et al., séedi]. This
algorithm is quite fast but has limited accuracy.

The second algorithm, which provides sufficient speed and higher
accuracy, was derived from the Intel Integrated Performance Primitives for

7-1

Intel” JPEG Library Developer's Guide

Intel architecture. This is a default option, set after a caillita()

To use the previous version of the DCT algorithm, set the
jcprops.jprops.dcttype field in JPEG_CORE_PROPERTIEStructure to
IJL_AAN . This setting must be done after callifigit() , but prior to
first call toijlRead() orijlwrite()

Writing and Reading of JPEG Comment Block

Two new fields in theJPEG_CORE_PROPERTIEStructure have been
introducedjpeg_comment is the pointer to a comment string, and
jpeg_comment_size is the length in bytes of the comment string,

including trailing zero. When IJL initialization takes place, these fields are
set to 0. It means that the following predefined comment string will be
inserted by the IJL while encoding data: “Intel® JPEG Library,
[<version>]". If you need to insert your own comment for encoded data
instead, set the pointer to the comment string and specify the length of the
string. Similarly, to extract the comment from JPEG data while decoding,
you should set the pointer to the comment buffer and specify the buffer
size. If the comment string was successfully read and placed into the
buffer, this field will be set to the number of bytes written into the buffer.

In case the buffer has insufficient size, the IJL will write data until the
buffer is full, and then return the error codé_ ERR_COM_BUFFER

If no comment string is present in JPEG data, the IJL will not change either
buffer contents or the buffer size field.

The application program must both allocate and free memory for the
comment string buffer.

Custom JPEG Tables

The IJL allows user-specified Huffman and quantization tables for specific
authoring requirements. These tables are specified via entries in the
JPEG_PROPERTIES]ata structure.

Advanced IJL Features

Custom Quantization Tables

The IJL can accept up to four custom quantization tables for authoring
JPEG images. Quantization tables are specified in the IJL as an 8x8 array
of 8-bit unsigned char entries in normal row-major, or non-zig-zagged,
form. By default, the standard quantization tables are used in the 1JL JPEG
encoding procedures and are described as follows:

unsigned char DefaultLuminanceQuantTbl[] =

{
16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,
121, 112, 100, 120, 92, 101, 103, 99
h

unsigned char DefaultChrominanceQuantThl[] =
{

17, 18, 18, 24, 21, 24, 47, 26,

26, 47, 99, 66, 56, 66, 99, 99,

99, 99, 99, 99, 99, 99, 99, 099,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 099,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99,

99, 99, 99, 99, 99, 99, 99, 99
h
Each quantization factor is adjusted within IJL by a quality level multiplier
and used to divide the input data to reduce its precision (and hence its
storage size). The entries in the quantization arrays correspond to
multipliers applied to certain spatial frequencies within the image. The

lowest-order (DC) component is located in the upper-left hand corner.

The following code illustrates adding custom quantization tables prior to
authoring a JPEG image.

7-3

Intel® JPEG Library Developer’s Guide

7-4

Il
/I An example using the IntelR JPEG Library:

/I -- Author a JPEG image using custom quantization tables.
I

/I Your special quantization table goes here!

static BYTE HQLumQuantTable[] =

{
16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35, 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,
121, 112, 100, 120, 92, 101, 103, 99

k

/I Your special quantization table goes here!

static BYTE HQChromQuantTable[] =

{
17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99

BOOL EncodeJPGFileWithCustomQuantization(
LPCSTR IpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

BOOL bres;
IJLERR jerr;

Advanced IJL Features

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE§props;

_try

{

bres = TRUE;
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;
}

/I Set the custom quantization tables. For this example we

/| assign two custom tables, although up to four are possible.
/I Here we also assume the tables specify luminance and

/I chrominance quantization factors (as in a YCbCr image).
jcprops.jprops.maxquantindex = 2;

jcprops.jprops.ngtables = 2;

jcprops.jprops.rawquanttables[0].quantizer = HQLumQuantTable;
jcprops.jprops.rawquanttables[0].ident = 0;
jcprops.jprops.rawquanttables[1].quantizer = HQChromQuantTable;
jcprops.jprops.rawquanttables[1].ident = 1;
jcprops.jprops.use_external_qgtables = 1;

/I Now that we have assigned the tables, we need to decide which
/I color channels of the authored image will use which tables.

/I The ident member of rawquanttables specifies a unique

/I identifier for each table; we reference the quant_sel member of
/Il each frame (image) component to this identifier.

jcprops.jprops.jframe.comps[0].quant_sel = O;
jcprops.jprops.jframe.comps[1].quant_sel = 1;
jcprops.jprops.jframe.comps[2].quant_sel = 1;
jcprops.jprops.jframe.comps| 3].quant_sel = 1;
jcprops.DIBWidth = width;

jcprops.DIBHeight = height;

jcprops.DIBChannels = nchannels; // nchannels MUST BE 3!
jcprops.DIBColor = IJL_BGR;

jcprops.DIBBytes = pixel_buf;

7-5

Intel” JPEG Library Developer's Guide

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;

/I Note: the following are default values and thus
/Il do not need to be set.

/I jeprops.JPGChannels = 3;
/I jcprops.JPGColor = IJL_YCBCR;
Il jeprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
/I jcprops.jquality = 75; /I Select "good" image quality
/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops, WL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y Ity
_ finally

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);
}

return bres;
} /I EncodeJPGFileWithCustomQuantization()

The IJL formats the quantization tables for internal use before authoring
any data. Thus, the tables that are passed to the I1JL only need to persist as
long as the first call tgIwrite()

Advanced IJL Features

Saving the JPEG Quantization Tables

This feature has entered the 1JL starting from version 1.5 of the library.

Now JPEG quantization tables detected in the source data bit stream during
decoding of a JPEG image can be saved into a user-defined buffer. To save
gquantization tables, you should specify pointers to desired storage buffers
and then call the functioifiRead () in a usual way, as seen from the code
example below:

JPEG_CORE_PROPERTIES jcprops;

jcprops.jprops.rawquanttables[0].quantizer
jcprops.jprops.rawquanttables[1].quantizer
jcprops.jprops.rawquanttables[3].quantizer
jcprops.jprops.rawquanttables[4].quantizer

BYTE quant_tablel1[64];
BYTE quant_table2[64];
BYTE quant_table3[64];
BYTE quant_table4[64];

&quant_table1[0];
&quant_table2[0];
&quant_table3[0];
&quant_table4[0];

ijlIRead (&jcprops, 1JL_IXXX_READPARAMS);

Note that each quantization table has a fixed size of 64 bytes.

The non-progressive JPEG image can have up to four quantization tables.
The IJL will accept all DQT segments and fill in the tables. The number of
obtained quantization tables is stored in jifygrops.jprops.nqgtabldield.

The IJL does not automatically free memory allocated for quantization
tables storage buffers, so both allocation and deallocation should be done
by your application program.

7-7

Intel” JPEG Library Developer's Guide

7-8

Custom Huffman Tables

The IJL accepts up to four sets of user-specified Huffman tables per
authored image. Huffman tables are used to determine the entropy codes
used in the run-length coding portion of the JPEG encoding process.

Huffman tables are specified in pairs: one table for each the DC and AC
frequency components in an image channel. Each Huffman table requires
two structures, one representing the bits required for each symbol, and one
with the actual symbol values. The data format within each of these
structures is identical to that of the embedded Huffman tables per the JPEG
specification.

The following code illustrates image authoring using custom Huffman
tables.

Il
/I An example using the IntelR JPEG Library:

/Il -- Author a JPEG image using custom Huffman tables.
1l

/I Your special Huffman DC Symbol Length table goes here!
static BYTE CustomLuminanceDCBIts[] =
{

0x00, 0x01, 0x05, 0x01, Ox01, Ox01, Ox01, 0Ox01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

%

/I Your special Huffman DC Symbol table goes here!
static BYTE CustomLuminanceDCValues[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b

h

/I Your special Huffman DC Symbol Length table goes here!
static BYTE CustomChrominanceDCBIts[] =
{

0x00, 0x03, 0x01, 0x01, Ox01, Ox01, Ox01, 0Ox01,

0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00

Advanced IJL Features

h

/I Your special Huffman DC Symbol table goes here!
static BYTE CustomChrominanceDCValues[] =

{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0xOa,
0x0b

h

/I Your special Huffman AC Symbol Length table goes here!
static BYTE CustomLuminanceACBits[] =
{

0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03,

0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, Ox7d

g

/I Your special Huffman AC Symbol table goes here!

static BYTE CustomLuminanceACValues[] =

{
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0Ox51, 0x61, 0x07,
0x22, 0x71, Ox14, 0x32, 0x81, 0x91, Oxal, 0x08,
0x23, 0x42, O0xbl, Oxcl, 0x15, 0x52, Oxdl, 0OxfO,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, Oxla, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0Ox3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
Ox4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
Ox6a, 0x73, 0x74, 0x75, 0x76, Ox77, 0x78, 0x79,
Ox7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0Ox8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, Oxa2, Oxa3, Oxa4, Oxab5, Oxa6, Oxa7,
0Oxa8, 0xa9, Oxaa, Oxb2, 0xb3, 0xb4, 0xb5, O0xb6,
0Oxb7, 0xb8, 0xb9, Oxba, Oxc2, 0xc3, 0xc4, 0xcb,
0xc6, 0xc7, 0xc8, 0xc9, Oxca, 0xd2, 0xd3, Oxd4,
0xd5, 0xd6, Oxd7, 0xd8, 0xd9, Oxda, Oxel, Oxe2,
Oxe3, Oxe4, Oxeb5, Oxe6, Oxe7, Oxe8, 0xe9, Oxea,
Oxfl, Oxf2, Oxf3, Oxf4, Oxf5, Oxf6, 0xf7, Oxf8,
0xf9, Oxfa

Intel® JPEG Library Developer’s Guide

/I Your special Huffman AC Symbol Length table goes here!
static unsigned char CustomChrominanceACBIts[] =
{

0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04,

0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, Ox77

k

/I Your special Huffman AC Symbol table goes here!

static unsigned char CustomChrominanceACValues[] =

{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, Ox71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
Oxal, Oxbl, Oxcl, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xdl, Ox0Oa, Ox16, 0x24, 0x34,
Oxel, 0x25, Oxfl, Ox17, O0x18, 0x19, Oxla, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, Ox4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, Oxba, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, Ox6a, 0x73, 0x74, 0x75, 0x76, 0x77, Ox78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, Oxa2, 0xa3, Oxa4, 0xab,
Oxa6, Oxa7, Oxa8, 0xa9, Oxaa, Oxb2, 0xb3, 0xb4,
0xb5, 0xb6, Oxb7, 0xb8, 0xb9, Oxba, 0xc2, 0xc3,
0Oxc4, 0xc5, 0xc6, 0Oxc7, 0xc8, 0xc9, Oxca, 0xd2,
0xd3, 0xd4, 0xd5, Oxd6, Oxd7, 0xd8, 0xd9, Oxda,
0Oxe2, 0xe3, Oxe4, Oxeb5, Oxe6, Oxe7, 0xe8, 0xe9,
Oxea, 0xf2, 0xf3, Oxf4, Oxf5, Oxf6, Oxf7, Oxf8,
0xf9, Oxfa

BOOL EncodeJPGFileWithCustomHuffman(
LPCSTR IpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

BOOL bres;

7-10

Advanced IJL Features

IJLERR jerr;

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

/I Set the custom Huffman tables. For this example, we

/I assign two sets of custom tables, though up to four are

/I possible. We also assume the tables specify luminance and
/I chrominance Huffman factors (as in a YCbCr image).

jcprops.jprops.nhuffActables = 2;
jcprops.jprops.nhuffDctables = 2;
jcprops.jprops.maxhuffindex = 2;

jcprops.jprops.rawhufftables[0].bits ustomLuminanceDCBits;
jcprops.jprops.rawhufftables[0].vals = CustomLuminanceDCValues;
jcprops.jprops.rawhufftables[0O].hclass = 0;
jcprops.jprops.rawhufftables[0O].ident = 0;
jcprops.jprops.rawhufftables[1].bits ustomLuminanceACBiIts;
jcprops.jprops.rawhufftables[1].vals = CustomLuminanceACValues;
jcprops.jprops.rawhufftables[1].hclass = 1;
jcprops.jprops.rawhufftables[1].ident = 0;
jcprops.jprops.rawhufftables[2].bits = CustomChrominanceDCBiIts;
jcprops.jprops.rawhufftables[2].vals = CustomChrominanceDCValues;
jcprops.jprops.rawhufftables[2].hclass = 0;
jcprops.jprops.rawhufftables[2].ident = 1;
jcprops.jprops.rawhufftables| 3].bits ustomChrominanceACBiIts;
jcprops.jprops.rawhufftables[3].vals = CustomChrominanceACValues;
jcprops.jprops.rawhufftables[3].hclass = 1;
jcprops.jprops.rawhufftables[3].ident = 1;
jcprops.jprops.use_external_htables = 1;

7-11

Intel® JPEG Library Developer’s Guide

/I Now that we have assigned the tables, we need to decide which
/I channels of the authored image will use which tables.

/I The ident member of rawhufftables specifies a unique

/I identifier for each table; we reference the Huffldentifier

/I member of each image (which applies to each component in

/I increasing order) to this identifier.

jcprops.jprops.HuffldentifierAC[0] =
jcprops.jprops.HuffldentifierDC[0]
jcprops.jprops.HuffldentifierAC[1]
jcprops.jprops.HuffldentifierDC[1]
jcprops.jprops.HuffldentifierAC[2]
jcprops.jprops.HuffldentifierDC[2]
jcprops.jprops.HuffldentifierAC[3]
jcprops.jprops.HuffldentifierDC[3]

0
0
1
1
1
1
1
1

jcprops.DIBWidth
jcprops.DIBHeight
jcprops.DIBChannels
jcprops.DIBColor
jcprops.DIBBytes

width;

height;

nchannels; // only 3 is valid
IJL_BGR,;

pixel_buf;

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jeprops.JPGHeight = height;

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Note: the following are default values and thus
/I do not need to be set.

/I jeprops.JPGChannels = 3;
/I jcprops.JPGColor = IJL_YCBCR;
/I jcprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
/I jcprops.jquality = 75; /I Select "good" image quality
/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&cprops, IJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y I __try

7-12

Advanced IJL Features

_ finally

{

/I Clean up the IntelR JPEG Library.

ijlFree

}

return bres;
} /I EncodeJPGFileWithCustomHuffman()

(&jcprops);

The IJL formats the Huffman tables for internal use before authoring any
data. Thus, the tables passed to the IJL only need to persist as long as the
first call toijlwrite()

Saving the JPEG Huffman Tables

This feature has entered the 1JL starting from version 1.5 of the library.

Now JPEG Huffman tables detected in the source data bit stream during
decoding of a JPEG image can be saved into a user-defined buffer. To save
Huffman tables, you should specify pointers to desired storage buffers and
then call the functiofjiRead () in a usual way, as seen from the code
example below:

JPEG_CORE_PROPERTIES jcprops;

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

huff_bits1[16];
huff_vals1[256];
huff_bits2[16];
huff_vals2[256];
huff_bits3[16];
huff_vals3[256];
huff_bits4[16];
huff_vals4[256];
huff_bits5[16];
huff_vals5[256];
huff_bits6[16];
huff_vals6[256];
huff_bits7[16];

7-13

Intel” JPEG Library Developer's Guide

BYTE huff_vals7[256];
BYTE huff_bits8[16];
BYTE huff_vals8[256];

jcprops.jprops.rawhufftables[0].bits = &huff_bits1[0];
jcprops.jprops.rawhufftables[0].vals = &huff_vals1[0];
jcprops.jprops.rawhufftables[1].bits = &huff_bits2[0];

huff_vals2[0];
huff_bits3[0];
huff_vals3[0];

jcprops.jprops.rawhufftables[1].vals
jcprops.jprops.rawhufftables[2].bits
jcprops.jprops.rawhufftables[2].vals

R R 2

jcprops.jprops.rawhufftables[3].bits = &huff_bits4[0];
jcprops.jprops.rawhufftables[3].vals huff_vals4[0];
jcprops.jprops.rawhufftables[4].bits huff_bits5[0];

jcprops.jprops.rawhufftables[4].vals = &huff_vals5[0];
jcprops.jprops.rawhufftables[5].bits = &huff_bits6[0];
jcprops.jprops.rawhufftables[5].vals = &huff_vals6[0];

jcprops.jprops.rawhufftables[6].bits = &huff_bits7[0];
jcprops.jprops.rawhufftables[6].vals = &huff_vals7[0];
jcprops.jprops.rawhufftables[7].bits = &huff_bits8[0];

&

Qo

jcprops.jprops.rawhufftables[7].vals huff_vals8[0];

ijIRead(&jcprops, IJL_JIXXX_READPARAMS);

Note that each Huffman table is defined by two data lgtss andVALS.
TheBITS list has a fixed size of 16 bytes, while the size of the respective
VALSlist is determined by the value containedirts . TheVALS list can
have the maximum size @b6bytes.

The non-progressive JPEG image can have up to eight Huffman tables.
The IJL will accept all DHT segments and fill in the tables. The number of
obtained Huffman tables is storedjaprops.jprops.nhuffDctableand
jcprops.jprops.nhuffActabldgelds.

The IJL does not automatically free memory allocated for Huffman tables
storage buffers, so both allocation and deallocation should be done by your
application program.

7-14

Advanced IJL Features

Extended Baseline Decoding

This section describes techniques to persist formatted table information
across multiple 1JL accesses to minimize table processing and memory
overhead.

Many image file formats separate the header, table, and entropy
information of a JPEG stream. Some tile based formats, like FlashPix, may
separate an image into tiles, each of which references JPEG tables stored
elsewhere in the file. Optimal decoding requires that the table information
is not processed for each tile in an image, rather the decoder formatted
tables should bpersisted Persistence requires that after the Huffman
and/or quantization tables are decoded and formatted, their formatted
representation needs to be stored external to the 1JL. Before an image is
decoded, the formatted tables are then copied back into the appropriate
locations within thelPEG_PROPERTIESstructure.

For more information please refer to the white paper titlésing the 1JL
with JPEG Compressed FlashPix Files”

TheHUFFMAN_TABLRNAQUANT TABLEStructures contain Huffman and
gquantization tables in the proper decoder format. These tables are located
within JPEG_PROPERTIESs specified in the following fragment:

o
/I ... a code fragment from the JPEG_PROPERTIES data structure ...
o

/I Tables
DWORD
DWORD
DWORD
DWORD
DWORD

nqtables;
maxquantindex;
nhuffActables;
nhuffDctables;
maxhuffindex;

QUANT_TABLE jFmtQuant[4];
HUFFMAN_TABLE jFmtAcHuffman[4];
HUFFMAN_TABLE jFmtDcHuffman[4];
short* jJEncFmtQuant[4];
HUFFMAN_TABLE *EncFmtAcHuffman[4];
HUFFMAN_TABLE *EncFmtDcHuffman[4];

7-15

Intel” JPEG Library Developer's Guide

/I Allow user-defined tables.
DWORD use_default_htables;
DWORD use_default_gtables;
JPEGQuantTable rawquanttables[4];
JPEGHuffTable rawhufftables[8];
BYTE HuffldentifierAC[4];

BYTE HuffldentifierDC[4];

The important members for table persistencermmeQuant |,

jFmtAcHuffman , andjFmtDcHuffman . After decoding the tables using
1JL_JXXXX_READHEADERcopy them to your persisted storage.

Next, to decode a JPEG bit stream (which is at a minimum assumed to be
in the Abbreviated Format for compressed image data), the user copies the
formatted tables back into theEG_PROPERTIESnembers and calls

ijlRead() with IJL_JXXXX_READWHOLEIMAGE

Copying the persisted tablesipEG_PROPERTIESS typically much faster
than appending a table stream to the front of each JPEG data stream and
forcing the decoder to process and format the tables at every call.

References

[Arai] Arai, Agui, and Nakajima, Trans. IEICE, vol. E 71(11),
pp. 1095-1097, Nov. 1988.

7-16

Glossary of Terms

For purposes of this document, the following definitions apply.

Abbreviated Format (for compressed image data)- This format is
identical to the Interchange Format, except that it may or may not include
all tables required for decoding. This format is intended for use within
applications where alternative mechanisms are available for supplying
some or all of the table specification data needed for decoding.

Abbreviated Format (for table specification data)— This format

contains only table specification data. Itis a means by which the
application may install in the decoder the tables required to subsequently
reconstruct one or more images.

Baseline Mode- (a.k.asequential DCT-based mod®ne of the four

main categories of image compression processes defined by JPEG. This
mode is the simplest DCT-based JPEG encoding and decoding process, and
represents a minimum capability that must be present in all DCT-based
JPEG decoders. Image components are compressed either individually or
in groups in a single scan. Here is a summary of its essential
characteristics:

 DCT-based process

e Source image: 8-bit samples within each component

¢ Sequential

¢ Huffman coding: 2 AC and 2 DC tables

e Decoders shall process scans with 1, 2, 3, and 4 components

* Interleaved and non-interleaved scans

Bit Stream - A partially encoded or decoded sequence of bits comprising
an entropy-coded segment.

A-1

Intel” JPEG Library Developer's Guide

A-2

Channel- (a.k.a.componentA single color component of an image. An
RGB image has 3 channels, a RGBA image has 4 channels, and a
Grayscale image has only 1 channel.

Compressed Data- Either compressed image data or table specification
data or both.

Compressed Image Data- A coded representation of an image as
specified by the JPEG specification.

Continuous-tone Image— An image whose components have more than
one bit per sample.

DCT — (Discrete @sine_Transform) A mathematical transformation using
cosine basis functions which converts a block of samples into a
corresponding array of basis function amplitudes.

DIB - (Device_hdependent Bmap) A pixel buffer where the image data is
stored in a byte interleaved form, one byte (8-bits) per channel. The most
common type is the Windows 24-bit DIB.

Entropy Coding — A lossless procedure that converts a sequence of input
symbols into a sequence of bits such that the average number of bits per
symbol approaches the entropy of the input symbols.

Extended Baseline Mode A sequential DCT-based encoding and
decoding process in which additional capabilities are added beyond the

Baseline mode. This mode extends the Baseline mode to a broader range of

applications. Here is a summary of its essential characteristics:
DCT-based process
Source image: 8-bit or 12-bit samples
Sequential or progressive
Huffman or arithmetic coding: 4 AC and 4 DC tables
Decoders shall process scans with 1, 2, 3, and 4 components
Interleaved and non-interleaved scans

Glossary of Terms ‘ \

Grayscale Image— A continuous-tone image that has only one component.

Horizontal Sampling Factor — The relative number of horizontal data
units of a particular component with respect to the number of horizontal
data units in the other components.

Huffman Table — The set of variable length codes required in the Huffman
coding process.

Huffman Coding — An entropy coding procedure that assigns a variable
length code to each input symbol.

IJL - (Intel® JPEG Library) The 1JL is a software library for application
developers that provides high performance JPEG encoding and decoding of
full color, and grayscale, stillimages. The IJL was developed to take
advantage of MMX™ technology if present.

Interchange Format — (a.k.a. JPEG Interchange Format or JIF) A JPEG
compressed image data bit stream that includes all tables that are required
by the decoder (i.e., Huffman and quantization tables).

Interleaved — The descriptive term applied to the repetitive multiplexing
of small groups of data units from each component in a scan in a specific
order.

JFIF - (JPEG_He Interchange &rmat) A minimal file format which
enables JPEG bit streams to be exchanged between a wide variety of
platforms and applications. The JFIF is entirely compatible with the
standard JPEG Interchange Format.

JPEG - (Joint_ Fhotographic Eperts Goup) Usually refers to ISO DIS
10918-1 and 10918-2, “Digital compression and coding of continuous-tone
still images", the compression standard this group created.

Lossless- A descriptive term for encoding and decoding processes and
procedures in which the output of the decoding procedure(s) is identical to
the input to the encoding procedure(s).

Lossy— A descriptive term for encoding and decoding processes which are
not lossless.

A-3

Intel” JPEG Library Developer's Guide

MCU - (Minimum Coded _Lhit) The minimal set of data written to a
compressed JPEG stream. The MCU is, for DCT-based JPEG coding
processes, a set of rectangular regions over several channels representing
the same pixel-based region. Itis always a multiple of 8 pixels wide and
high. Subsampling various color components of an image generates MCUs
with dimensions greater than 8 x 8 pixels. For example, common 4:1:1
subsampled JPEG images have a 16 x 16 pixel MCU.

Non-Interleaved — The descriptive term applied to the data unit processing
sequence when the scan has only one component.

Pixel Buffer - A rectangular array of pixels with each pixel having the

same number of component values (color channels). The number of
components and the color space interpretation of the components are also
required.

Pre-Processing- The act of applying various operations to an image prior
to sending it to the JPEG encoder. These operations typically include color
space conversion and subsampling.

Post-Processing- The act of applying various operations to an image after
receiving it from the JPEG decoder. These operations typically include
upsampling and inverse color space conversion.

Progressive Mode- One of the four main categories of image
compression processes defined by JPEG. This mode is a DCT-based
coding process that is achieved by a sequence of scans, each of which
codes part of the quantized DCT coefficient information.

Quantization - A lossy procedure in which the DCT coefficients are
linearly scaled in order to achieve compression.

Quantization Table — The set of 64 integer values used to quantize the
DCT coefficients.

Restart Interval — The integer number of MCUs processed as an
independent sequence within a scan.

Glossary of Terms

ROI - (Rectangle-Blnterest) A particular rectangular region of the image
which can be specified by (top, left) and (bottom, right) pixel coordinates.
The ROI must be contained within the image, but may encompass the total
image.

Scan-— A single pass through the data for one or more of the components in
an image.

Subsampling— (a.k.a. Downsampling) A procedure by which the spatial
resolution of an image is reduced.

Table Specification Data— The coded representation from which the
tables used in the encoder and decoder are generated.

Upsampling— A procedure by which the spatial resolution of an image is
increased.

Vertical Sampling Factor — The relative number of vertical data units of a
particular component with respect to the number of vertical data units in
the other components.

Zig-Zag Sequence- A specific sequential ordering of the DCT
coefficients from (approximately) lowest spatial frequency to highest.

A-5

Data Structue and
Type Definitions

For purpases of thisdocumety, the following definitions apply and are
meart to be consistetiwith the IJL headefile (ijl.h). If therare
inconsistencieghe heade fil e shoul always take precedence.

JPEG_CORE_PROPERTIES

[*D*

o

1l

/1 Name: JPEG_CORE_PROPERTIES

1

/| Purpose: This is the primar y dat a structur e between the IJL and
/'l the externa | user. It store s JPEG stat e information

/1 and control s the IJL. It i s user-modifiable.

1l

/'l See th e Developer s Guide for detail s on appropriat e usage.
1

/1 Context: Used by all low-leve | 1JL routine s to store

/| pseudo-globa | information.

1

/'l Fields:

1l UseJPEGPROPERTIES Set thi s fla g '= 0 if you wis h to override

Il th e JPEG_CORE_PROPERT&E "IN " parameter s with
1 th e JPEG_PROPERTIB parameters.

1

1l DIBBytes IN: Pointe r to buffe r of uncompresse d data.
1l DIBWidth IN: Widt h of uncompresse d data.

Il DIBHeight IN: Heigh t of uncompresse d data.

Il DIBPadBytes IN: Paddin g (i n bytes) at end of each

Il row i n th e uncompresse d data.

1l DIBChannels IN: Numbea of component s in the

1l uncompresse d data.

B-1

Intel® JPEG Library Developer’s Guide

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DIBColor
DIBSubsampling

JPGFile
JPGBytes
JPGSizeBytes
JPGWidth
JPGHeight
JPGChannels

JPGColor
JPGSubsampling

JPGThumbWidth
JPGThumbHeight

cconversion_reqd

upsampling_reqd
jquality

jprops

IN:
IN:

IN:
IN:
IN:

OUT:

IN:

OUT:

IN:

OUT:

IN:

OUT:

IN:
IN:

OUT:

OUT:
OUT:

OUT:

OUT:
IN:

Color space of uncompressed data.
Required to be IJL_NONE.

Pointer to file based JPEG.
Pointer to buffer based JPEG.
Max buffer size. Used with JPGBytes.
Number of compressed bytes written.
Width of JPEG image.
After reading (except READHEADER).
Height of JPEG image.
After reading (except READHEADER).
Number of components in JPEG image.
After reading (except READHEADER).
Color space of JPEG image.
Subsampling of JPEG image.
After reading (except READHEADER).
JFIF embedded thumbnail width [0-255].
JFIF embedded thumbnail height [0-255].

If color conversion done on decode,

TRUE.
If upsampling done on decode, TRUE.

[0-100] where highest quality is 100.

"Low-Level" IJL data structure.

HHHHTH T T T T T T

I

D/
struct JPEG_CORE_PROPERTIES

{

B-2

DWORD UseJPEGPROPERTIES;

/I default = 0

/I DIB specific I/O data specifiers.

BYTE *DIBBytes;
DWORD DIBWidth;

int DIBHeight;

DWORD DIBPadBytes;
DWORD DIBChannels;
IJL_COLOR DIBColor;

IJL_DIBSUBSAMPLING DIBSubsampling;

/I default = NULL

/I default = 0
/I default = 0

/I default = 0

/I default = 3

/I default = IJL_BGR
/I default = 1IJL_NONE

Data Structure and Type Definitions

/I JPEG specific /O data specifiers.
char *JPGFile;

BYTE *JPGBytes;

DWORD JPGSizeBytes;

DWORD JPGWidth;

DWORD JPGHeight;

DWORD JPGChannels;

IJL_COLOR JPGColor;
IJL_JPGSUBSAMPLING JPGSubsampling;
DWORD JPGThumbWidth;

DWORD JPGThumbHeight;

/I JPEG conversion properties.
DWORD cconversion_reqd;
DWORD upsampling_reqd;
DWORD jquality;

/I Low-level properties.
JPEG_PROPERTIES jprops;

/I default = NULL
/I default = NULL

/I default = 0
/I default = 0
/I default = 0
/I default = 3

/I default = IJL_YCBCR
/I default = 1JL_411
/I default = 0
/I default = 0

/I default = TRUE
/I default = TRUE
/I default = 75

B-3

Intel® JPEG Library Developer’s Guide

Supporting Type Definitions

#define IJL_NONE 0
#define 1IJL_OTHER 255

[*D*

o

1l

/I Name: 1JLIOTYPE

1l

/I Purpose: Possible types of data read/write/other operations to be
/I performed by the functions ijlRead and ijlWrite.

1l

/I See the Developer's Guide for details on appropriate usage.

1l

/I Fields:

1l

/I 1IL_JFILE_XXXXXXX Indicates JPEG data in a stdio file.

1

/I 1JL_JBUFF_XXXXXXX Indicates JPEG data in an addressable buffer.
1l

o

1l

D/

typedef enum

{
IJL_SETUP = -1,

/I Read JPEG parameters (i.e., height, width, channels,
/I sampling, etc.) from a JPEG bit stream.
IJL_JFILE_READPARAMS = 0,
IJL_JBUFF_READPARAMS = 1,

/I Read a JPEG Interchange Format image.
IJL_JFILE_READWHOLEIMAGE = 2,
IJL_JBUFF_READWHOLEIMAGE = 3,

/I Read JPEG tables from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READHEADER = 4,
IJL_JBUFF_READHEADER = b5,

Data Structure and Type Definitions

/I Read image info from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READENTROPY = 6,
IJL_JBUFF_READENTROPY = 7,

/I Write an entire JFIF bit stream.
IJL_JFILE_WRITEWHOLEIMAGE = 8,
IJL_JBUFF_WRITEWHOLEIMAGE = 9,

/I Write a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEHEADER = 10,
IJL_JBUFF_WRITEHEADER = 11,

/I Write image info to a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEENTROPY = 12,
IJL_JBUFF_WRITEENTROPY = 13,

/I Scaled Decoding Options:
/I Reads a JPEG image scaled to 1/2 size.
IJL_JFILE_READONEHALF = 14,

IJL_JBUFF_READONEHALF = 15,

/I Reads a JPEG image scaled to 1/4 size.

IJL_JFILE_READONEQUARTER = 16,
IJL_JBUFF_READONEQUARTER = 17,
/I Reads a JPEG image scaled to 1/8 size.
IJL_JFILE_READONEEIGHTH = 18,
IJL_JBUFF_READONEEIGHTH = 19,

/I Reads an embedded thumbnail from a JFIF bit stream.
IJL_JFILE_READTHUMBNAIL = 20,
IJL_JBUFF_READTHUMBNAIL =21

} JLIOTYPE;

M T T

B-5

Intel® JPEG Library Developer’s Guide

1
1
1
1
1
1
1
1
1
1
1
1
1

Name: [|JL_COLOR
Purpose: Possible color space formats.

Note these formats do *not* necessarily denote

the number of channels in the color space.

There exists separate "channel" fields in the
JPEG_CORE_PROPERTIES data structure specifically
for indicating the number of channels in the

JPEG and/or DIB color spaces.

See the Developer's Guide for details on appropriate usage.

HHHHTH T T T T T

1

D/
typedef enum
{
IJL_RGB = 1, /I Red-Green-Blue color space.
IJL_BGR = 2, /I Reversed channel ordering from IJL_RGB.
IJL_YCBCR = 3, /I Luminance-Chrominance color space as
/I defined by CCIR Recommendation 601.
JL_G = 4, /I Grayscale color space.
IJL_RGBA_FPX =5, [/ FlashPix RGB 4 channel color space that
/I has pre-multiplied opacity.
IJL_YCBCRA_FPX = 6,// FlashPix YCbCr 4 channel color space that
/I has pre-multiplied opacity.
1l IJL_OTHER /I Some other color space not defined by
/I the IJL. This means no color space
/I conversion will be done by the IJL.
} UL_COLOR,;
[*D*

HHHHH T T T T T T

1
I
I
I

B-6

Name: 1JL_JPGSUBSAMPLING

Purpose: Possible subsampling formats used in the JPEG.

Data Structure and Type Definitions

I

/I See the Developer's Guide for details on appropriate usage.
I

o

I

D/
typedef enum
{

IJL_411 = 1, /I Valid on a JPEG w/ 3 channels.

IJL_422 = 2, /I Valid on a JPEG w/ 3 channels.

IJL_4114 = 3, /I Valid on a JPEG w/ 4 channels.

IJL_4224 = 4 /I Valid on a JPEG w/ 4 channels.
Il 1IJL_NONE /I Corresponds to "No Subsampling”.

/I Valid on a JPEG w/ any number of channels.

1l IJL_OTHER /I Valid entry, but only used internally to

/I the 1JL.

} JL_JPGSUBSAMPLING;

;//53//

Z Name: [|JL_DIBSUBSAMPLING

Z Purpose: Possible subsampling formats used in the DIB.

Z See the Developer's Guide for details on appropriate usage.
Z///

‘o

typedef enum

{
Il 1IJL_NONE = Corresponds to "No Subsampling".

} UL_DIBSUBSAMPLING;

B-7

Intel® JPEG Library Developer’s Guide

B-8

Return Error Codes

;//53//

Z Name: [|JLERR

Z Purpose: Listing of possible "error" codes returned by the IJL.
Z See the Developer's Guide for details on appropriate usage.

Z Context: Used for error checking.
Z///

1

D/

typedef enum

{
/I The following "error" values indicate an "OK" condition.
IJL_OK = 0,
IJL_INTERRUPT_OK = 1,
IJL_ROI_OK = 2

/I The following "error" values indicate an error has occurred.

IJL_EXCEPTION_DETECTED = -1,
IJL_INVALID_ENCODER = -2
IJL_UNSUPPORTED_SUBSAMPLING = -3
IJL_UNSUPPORTED_BYTES_PER _PIXEL = -4,
IJL_MEMORY_ERROR = 5
IJL_BAD_HUFFMAN_TABLE = -6,
IJL_BAD_QUANT _TABLE = 7,
IJL_INVALID_JPEG_PROPERTIES = -8
IJL_ERR_FILECLOSE = 9
IJL_INVALID_FILENAME = -10,
IJL_ERROR_EOF = -11,
IJL_PROG_NOT_SUPPORTED = -12,
IJL_ERR_NOT_JPEG = -13,
IJL_ERR_COMP = -14,
IJL_ERR_SOF = -15,
IJL_ERR_DNL = -16,
IJL_ERR_NO_HUF = -17,
IJL_ERR_NO_QUAN = -18,

Data Structure and Type Definitions

IJL_ERR_NO_FRAME = .19,
IJL_ERR_MULT_FRAME = .20,
IJL_ERR_DATA = 21,
IJL_ERR_NO_IMAGE = 22
IJL_FILE_ERROR = 23,
IJL_INTERNAL_ERROR = 24,
IJL_BAD_RST_MARKER = .25,
IJL_THUMBNAIL_DIB_TOO_SMALL = .26,
IJL_THUMBNAIL_DIB_WRONG_COLOR = -27,
IJL_BUFFER_TOO_SMALL = .28,
IJL_UNSUPPORTED_FRAME = 29,
IJL_ERR_COM_BUFFER = 30,
IJL_RESERVED = .99

} WJLERR;

B-9

Intel” JPEG Library Developer's Guide

[JLibVersion Structure

/*D*

Tl

/I Name: IJLibVersion

Il

/I Purpose: Stores library version info.
Il

/I Context:

Il

/I Example:

1l major -1

Il minor -0

Il build -1

/I Name - "jlzo.dn”

Il Version - "1.0.1 Betal"
Il InternalVersion - "1.0.1.1"

Il BuildDate - "Sep 22 1998"
/I CallConv - "DLL"

Il

i

D/

typedef struct _lJLibVersion

{
int major;
int minor;
int build;

LPCSTR Name;
LPCSTR Version;
LPCSTR InternalVersion;
LPCSTR BuildDate;
LPCSTR CallConv;

} JLibVersion;

B-10

Frequently Asked
Questions

Q: I have a top-to-bottom image. Can IJL handle this type of DIBs?

A: Yes, the IJL supports both top-down and bottom-up image orientations
for encoding. If an image file has bottom-up orientation, you need just to
specify a negative value for theBHeight field in the
JPEG_CORE_PROPERTIEStructure. Note that JPEG data format defines
only the top-down image orientation; thus, tiesHeight field must

always contain a positive value.

Q: Does IJL have a resize capability (I have a 600x400 DIB and | want to
write a 300x200 JPEG image)?

A: The IJL supports scaled decoding mode to decode an image at 1/2, 1/4,
or 1/8 of initial size. There is no provision in I1JL for resizing an image

while encoding. You can udetel® Image Processing Libraty resize a
source image.

Q: I'would like to use the DC and AC coefficients to check similarity of
two JPEG images. Is it possible to retrieve the coefficients with the 1JL?

A: Yes, starting from version 1.5, the library supports raw DCT
coefficients retrieval. Se&Vorking with Raw DCT Coefficients’section
in Chapter 5 of this manual.

Q: Can you provide any information on a new version of your JPEG library
that will support scanline based encoding? For our company’s applications,
having access to the entire bitmap for encoding is impractical. In some
cases, our software deals with images that are hundreds of megabytes.

A: You can use interrupted encoding and decoding capability, which is
supported by the IJL. See code examples in this mal&doding an
Image Row by RovandEncoding by One MCU at a Time

C-1

http://developer.intel.com/software/products/perflib/ipl/index.htm

	Intel® JPEG Library Developer's Guide
	Revision History
	Legal Information
	Contents
	1. Overview
	Nature of Product
	Minimum Requirements
	What’s New in IJL
	Technical Support and Feedback

	2. Programming Considerations
	Dynamic Link Library
	Static Link Library
	Import Library
	Header File
	Steps for Creating an IJL Application

	3. Architecture Description
	Supported I/O Data Structures
	Supported Data Formats
	JPEG Properties Data Storage
	Multi-Threading Support

	4. Interface Specifications
	5. Inside the Library
	Initialization
	Clean-up
	Reading Data
	Writing Data
	Opening a JPEG Image
	Creating a JPEG Image
	Interrupted Encoding and Decoding
	Rectangle-of-Interest Decoding
	Scaled Decoding
	Embedded Thumbnail Decoding
	Progressive Image Support
	Accessing JPEG Images From a Buffer
	Working with Raw DCT Coefficients
	Support of a Pixel-Interleaved YCbCr422 Format
	Odd Data Formats

	6. Pre- and Post-Processing
	DIBs
	IJL Color Spaces
	Subsampling
	Upsampling
	Decoding and Post-Processing Matrix
	Encoding and Pre-Processing Matrix

	7. Advanced IJL Features
	Use of Processor-Specific Code
	Setting the DCT Algorithm
	Writing and Reading of JPEG Comment Block
	Custom JPEG Tables
	Custom Quantization Tables
	Saving the JPEG Quantization Tables
	Custom Huffman Tables
	Saving the JPEG Huffman Tables
	Extended Baseline Decoding

	A. Glossary of Terms
	B. Data Structure and Type Definitions
	JPEG_CORE_PROPERTIES
	Supporting Type Definitions
	Return Error Codes
	IJLibVersion Structure

	C. Frequently Asked Questions

